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Abstract: The effects of Hall current on an unsteady MHD free convection and mass transfer flow in an electrically
conducting incompressible fluid past an infinite vertical porous plate in a rotating porous medium having a constant heat
source and a variable suction have been analyzed. Similarity equations are derived by introducing a time dependent

length scale. These equations are then solved numerically. The effects of various parameters entering into the problem

on the primary and secondary velocities are shown graphically. Finally the values of T _,T A of the skinfriction
coefficient and the Nusselt number N, are tabulated.
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Introduction

Recently interest has grown considerably on the study of magnetohydrodynamic (MHD) viscous flows with
Hall currents due to its engineering applications. The unsteady MHD free convection flow with Hall currents
was first studied by Pop (1972). Rapties and Kafousias (1982) studied free convection and mass transfer
flow through a porous medium in the presence of transverse magnetic field. Comprehensive studies have
also been carried out on MHD free convection and mass transfer flows in a rotating system by many
workers. Some of them are Debnath (1972; 1973), Rapties and Perdikis (1982) and Geogantopoulos et
al.(1981), Alam and Sattar (1998; 1999). Recently Mahato and Maiti (1988) have studied the unsteady free
convective and mass transfer flow in a rotating porous medium when the plate temperature is an oscillatory
function of time. More recently Jha (1991) studied the effects of Hall current and wall temperature
oscillation on free convective and mass transfer flow in a rotating porous medium with constant heat
source. Jha (1991) employed perturbation technique to solve the corresponding momentum and energy
equations. Most of these studies, however, considered constant temperature or constant heat flux at the plate.
However, Elliott (1969) and Pop (1972) considered time dependent plate temperature for unsteady flows
near an infinite flat horizontal plate and near a infinite vertical plate, respectively.

Following the work of Jha (1991), we propose to study the unsteady MHD free convection and mass transfer
flow with Hall current in an incompressible electrically conducting fluid past an infinite vertical porous plate
in a rotating porous medium having a constant heat source and a variable suction with time dependent
temperature at the plate. A uniformly applied magnetic field is taken into consideration along with a time
dependent suction velocity. Unlike the work of Jha (1991) the momentum and energy equations in the
present study have been solved numerically by the method of superposition.

Mathematical Analysis

Consider an Unsteady MHD free convective and mass transfer flow of an electrically conducting viscous
incompressible fluid through a porous medium along an infinite vertical porous plate (z=0) with the effects
of Hall current. The flow is subjected to a time dependent suction velocity. The flow is also assumed to be in
the x-direction which is taken along the plate in the upward direction and z-axis is normal to it. At time >0,

the temperature and the species concentration at the plate are raised to 7, (# T, )and C_(# C_),T_ and

C_ being the temperature and the species concentration of the uniform velocity, and thereafter maintained

constant. The magnetic Reynolds number of the flow is taken to be small enough so that the induced
magnetic field can be neglected (Shercliff, 1965). As in the case of Jha (1991), the fluid is permeated by a

strong magnetic field B such that B=(0,0,B,). Using the relation V.J =0 for the current density
=(J_J y,J .) we obtain J , =constant. Since the plate is non conducting J, =0 at the plate and hence

z=ro everywhere. The generalized Ohm’s law in the absence of electric field (Meyer, 1958), is of the form
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where gq=(u,v,w) is the velocity vector and O & u,,w,,7,,en,and p, are respectively the electric

conductivity, the magnetic permeability, the cyclotron frequency, the electron collision time ,the electric
charge ,the number density of electron and electron pressure . We consider a weakly ionized gas for which
the electron pressure is negligible. Also under usual assumptions the thermoelectric pressure and ion slip are
negligible. Then we have from Ohm's law
/!
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where m = @,7, is the Hall parameter.

In accordance with the above assumptions and Boussineq's approximation that variation of density of the
field is taken in the body force term, the basic equations (Alam and Sattar, 1998; 1999) relevant to the
problem are momentum equations

du  du 0%u . wu OBlu!
—+w—-2Qv=0—+ T-T,)+ C-C)————""—(u+ 1
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continuity equation:
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energy equation:
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P
concentration equation:

ot 0z dz°

where u and v are the velocity components along x and y directions, w is the suction velocity, T and C are
respectively the temperature and concentration of the fluid, U is the kinematic viscosity of the fluid, O is the

(&)

density of the fluid, k is the thermal conductivity, % , 18 the specific heat at constant pressure, B is the

volumetric coefficient of thermal expansion, PB7is the volumetric coefficient of expansion with

concentration, g, is the acceleration due to gravity, O ’is the electric conductivity, £2is the constant
angular velocity, Q is the heat source, K is the permeability of the porous medium and D is the molecular
diffusivity.

The boundary conditions for the problem are
u=0,v=0,w=w(),T=T,C=C, a z=0
u=0v=0w=0T=T ,C=C, a5 B Z=> (6)

In order to obtain a similarity solution to the problem considered, we now introduce a similarity parameter
g as

g=0c0)... =20 @)

such that O is a length scale.
In terms of this length scale, a convenient solution of equation (3) is considered to be
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W=ty 8)

where W, is the suction parameter.
We now introduce the following dimensionless variables

n=§
u=U,fm) 9
v =U08(7?)

T=T_ +(T,6-T_)o.6(n)
C=C_+(C,-C.)op(m). (10)

(o)
where 0. =—,0, being the value of G at £ =¢,,U, is the uniform velocity and n is a positive
Oy
integer. Introducing the equations (8)-(10) in equation (1),(2), (4) and (5), we obtain the following
dimensionless equations respectively

_%aa_(:nf’_wcf'—zf?ng’— ;’f+G’g+G’”¢"(ITM@§(f+mg) (11)
_%%_fg'n_wug+2nf=g'—K1,,g+H‘_‘fn2 (mf ~£) (1)
%%?(ne-ne')—woe’=£:e'—%e (13)
—%%—‘:n¢’—wo¢'=§l:¢' 14
o’g,Bal(T,-T.) Qo?

where G, (=

) is the Grashof number, R(=

) is the rotational parameter,

U,v

+ 2 _ B2 u?
G, (= 8B 0" (C, C‘”)) is the modified Grashof number, M (= —M)
U, vp

is the magnetic

2
v g
) is the Prandtl number, S (= 3) is the Schmidt number, ¢t = (Qk ) is the heat

»0

parameter, P, (=

K
source parameter and K : i is the permeability parameter. In equations (11)-(14) primes denote
o

. | i o ,_d()
differentiation with respectto | ()" = d_ G
n
The boundary conditions (6) relevant to the equations (11)-(14) now transform to
£f=0,2=00=1¢=1 a n=0
f=0,g=0,0=0,0=0 as n—eco. ' (15)

o Jdo
The equations (11)-(14) are similar except for the term ——a— where time t appears explicitly.
v ot

o Jdo
Thus the similarity condition requires that —a— in the equations (11)-(14) must be a constant quantity.
L ot

Hence following the work of Sattar & Hossain (1999) one can try a class of solutions of the equations (11)-
(14) by assuming that
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o do
———=C(a constant). (16)
v ot
Now integrating (16), one obtains
o =+2Cwt (17)

where the constant of integration is determined through the condition thatG = 0 when t=0. It thus appears
from (17) that, by making a realistic choice of C to be equal to 2 in (16) the length scale G becomes equal

to O= 2«/\«? which exactly corresponds to the usual scaling factor considered for various nonsteady
boundary layer flows (Schlichting, 1968). Since O is a scaling factor as well as a similarity parameter, any
other value of C in (16) would not change the nature of the solution except that the scale would be different.
Now making a realistic choice of C to be equal to 2 in equation (16), the equations (11)-(14) finally become

f"+2fC+2Rg - 1,f+Gr9+Gm¢—L2(f+mg)=0 (18)
K (1+m”)
g +2g'C—2Rf - g+L(mf—g) =0 (19)
K7 t+m®)
0" +2POC —0(2nP. +a)=0 (20)
0" +2S 9C =0 @21)

W,
where { =7]+7°.

Among the equations (18)-(21), equation (21) is simple and non-coupled whose solution is straight forward
and is obtained as
erfc(,/S.C
w,
erfc(y/S, 7")

Then using the solution (21) and applying the method of superposition (Na, 1979) the equations (18)-(20)
have been solved numerically. The essence of this method of superposition is to reduce the boundary value
problem to an initial value problem, which can easily be integrated out, without any iteration, by any initial
value solver. For this purpose the well-known Runge Kutta Merson Integration Scheme has been used. Since
for weakly ionized gas the value of m (Hall parameter) is less than unity (Sherman and Sutton, 1961
calculations have been made for m=0.3, 0.5, 0.7. As for other parameters values are taken as those of Jha[10]

for consistency. Now denoting 7,and 7, as the components of the skinfriction and N as the Nusselt

o) =

(22)

number, the numerical values of ’L'I,‘L‘y and N , are obtained from the process of numerical integration.
These values are then sorted in Tables 1 and 2.

Results and Discussion

The velocity profiles for the x and y components of velocity, commonly known as primary and secondary
velocities, are shown in Figs. 1-4 for different values of m, R, K ', Wyand ¢ and for fixed values of

M, P,G,,G,and S,. In the calculations the value of n is taken to be 2.0, which define the case of linear

dependence of the plate temperature on time. Further, the values of M and G are taken to be large, since
these values respectively correspond to a strong magnetic field and to a cooling problem that is generally
encountered in nuclear engineering in connection with the cooling of reactors. The value of §_, (the
Schmidt number) is taken to be .6, which corresponds to water vapour and represents a diffusing chemical
species of most common interest in air (for example in air because of the presence of H ,or H 2CJ' the value

of §_is .6). As for Prandtl number we take P, =0.71 which corresponds to air at 20° ¢. With these flow

parameters, it is thus observed from Figs.1 and 2 that the primary and secondary velocities decrease owing to
the increase of ¢ (Heat source parameter), which means that the generation of higher heat in the flow
reduces the velocity field. It is also observed from these Figures that the rotation parameter R has a minor
effect on the primary velocity but comparatively larger decreasing effect on the secondary velocity. As for
the effects of Hall parameter, it is also observed from these Figures that Hall current has a minor increasing
effect on the primary velocity whereas there is a considerable increase in the secondary velocity which
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indicates and also supports the fact that the Hall current induces a cross flow in a free convection boundary
layer. In Figs. 3 and 4 the effects of the permeability parameter (K ) and the suction parameter (w,) on
the primary and secondary velocities are shown respectively. It appears from these Figures that both the

primary and secondary velocities increase with the increase of K. An opposite effect on the primary and
secondary velocities is observed as the suction parameter increases, which is usually expected. Since the
energy equation is independent of all parameters except the heat source and suction parameters, the

temperature profiles are shown only for @and Ww;in Fig. 5.The effects and w, on the temperature
profiles are, however, very low as seen from the Fig. 5.Finally, the effects of various parameters on
T,,T and Nu are shown in Tables 1 and 2. The conclusions and discussion regarding the behavior of the

parameters on the skinfriction and Nusselt number are evident from the tables.

Table 1. Numerical values of T, T and N, for M =10,G, =10,G,, =4, K'=1,Pr =71 S, =.6and

w, =.5

M R o T, T, N,

03 |02 |10 2.5539 0.1518 2.44009
05 |02 |10 2.6076 0.2532 2.44001
07 |02 |10 2.6763 0.3337 2.44001
03" 164 [io 2.5587 0.1264 2.44001
03 |o6 |10 2.5626 0.1008 2.44001
030. |02 |15 2.5230 0.1484 2.54558
3 02 |20 2.4943 0.1452 2.64688

Table 2. Numerical values nf‘flr.’[y and N“ for M=10, Gr = 10, G"1 =4 Pr =dflie =10 R="2m=9
and SC =0

Kf “.D T.r rv Nu

1.0 0.5 2.5539 0.1518 2.44009
20 05 2.5861 0.1585 2.44009
3.0 0.5 2.5971 0.1609 2.44010
1.0 1.0 | 2.5221 0.1446 2.65436
1.0 1.5 2.4797 0.1363 2.88054
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