
 1

ABSTRACT DATA TYPES AND OBJECTS FOR DEVELOPING

COMPONENT BASED SOFTWARE

Abstract: Abstract data type (ADT) and objects are the key factors for building reusable components for an

object oriented programming language (OOPL). In this paper, we first propose a method to study the properties

of an object and use them to build components of an OOPL. Finally we compare the proposed method with the

conventional one.

Keywords: Abstract data types, component-based software development, object-oriented programming language,

objects, components, reusability.

Introduction

Component-based software development (CBSD) is an emerging paradigm of software

development (Aoyama, 1998). This approach may be used to develop more reliable, portable

and low cost software. In CBSD approach a lot of existing software components may be used

with or without modification. In object-oriented programming (OOP) components are very

crucial for developing software. Abstract data types are the key factors for building reusable

components. A reusable software component is a collection of operations designed to aid

programmers in the development of application programs. The use of software components

saves both time and money. This savings along with assured accuracy and reliability is the

main reason for using components.

The use of component in developing software is being widely used in recent times. A large

number of software industries in various countries of the world have been motivated by the

effectiveness of the reusable components. Component-based software development using

existing software component has several advantages over traditional or conventional software

development. Component reusability offers the software developers or software engineers a

large degree of flexibility to develop software with more reliability and low cost. As more

and more systems are built from existing component, it has become increasingly important to

have proper characterization of components (Han, 1998).

A reusable component may be (McClure, 1992):

 Program code (whole program, code fragments)

DOI: https://doi.org/10.53808/KUS.2001.3.1.0143-se

 2

 Design specification (logical data model, process structures, and application models)

 Plans (project management plans, test plans)

 Expertise experience (life-cycle model reusable, quality assurance, application area

knowledge)

 Any information used to create software and software documentation

A reusable component has the following properties (Meyer, 1994):

 Additivity: Able to combine components with minimal side effects and without

destructive interaction.

 Expressiveness: The formalism should express all possible kinds of components.

 Formal mathematical basis: Allow correctness conditions to be stated and component

combination preserve key properties of components.

 Easily describable: Easy to understand and explain

 Programming language independent: Not unnecessarily specific about superficial

language details.

 Verifiable: Easy to test.

 Simple, simple, precise interface: minimal number of parameters passed and parameter

passed explicitly.

 Defined protocols: Protocols should exist for the use of components, so that a software

developer can employ component licensed from many companies.

 Easily changed: Easy to modify with minimal and obvious side effects.

 Reusable: Has high reuse potential; likely to be usable in many systems.

 3

Sources of components

Libraries of modules which manipulate simple data type and which have single well-defined

functions e.g. subroutines, libraries for numerical analysis, where the complex operations are

performed. A library of reusable components requites very little work to incorporate them

into a new system. When a developer builds an application from existing components, these

components come from three different sources:

 Tools vendor

 Software companies that sell object oriented applications

 Internal development

Components that are created as part of an application system development are unlikely to be

immediately reusable (Sommerville, 1998). These components are general towards the

requirements of the system in which they are originally included. To be reusable, they have to

be generalized to satisfy a wider range of requirements. These types of generalization may be

name generalization, operation generalization and exception generalization. After

generalization, the quality of the generalized component should be checked.

Figure 1 shows a model of an abstract data type illustrating the different types of operation,

which might be included in a generalized reusable component.

Abstract Data Type

Exported type

names

Access

operations

Constructor

operations

I/O operations

Iterator

operations

Comparison

operations

Figure 1. A model of reusable data type

 4

 Exported type names are the names of types declared within the ADT which are available

for reuse.

 Access operations are used to inspect the value of the elements of the component.

 Constructor operations are used to add or subtract elements to or from the component.

 I/O operations are used to read or write the component to and from disk and to print the

component.

 Iterator operations allow each component of the ADT to be inspected without removing

it from the data type.

 Comparison operations are used to compare one instance of the ADT with another.

In a component some operations may be implemented by the combination of other

operations. If the component exhibits poor performance, it can not be reused. On the other

hand very complex component can not reused because it is hard to understand. So it always a

difficult decision for the reusable component designer to find an acceptable balance between

providing a minimal and an efficient set of operations.

So far we discus the component and their general properties. To build a component we need

to closer look at the construction level of a component.

Abstract data types (ADT)

Abstract data type (ADT) is the extension of the user-defined data type in conventional

programming languages with encapsulation. ADT contains representation of data and

operation on data. The encapsulation feature of the ADT not only hides the implementation

of data but also provides a protective wall that shields its data from improper use. All

interfaces occur through operations defined within the ADT. The operations then provide a

well-defined means for accessing the objects of a data type. ADT gives objects a public

interface through its permitted operations (Martin and Odell, 1992).

 5

In ADT objects are the basic run-time entities in an object-oriented system. They may

represent a person, a place, a bank account, a customer, a table of data or any item that the

program must handle. Programming problem is analyzed in terms of objects and nature of

communication between them. Objects should be chosen so that they match closely to the

real-world objects. When a program is executed, the objects interact by sending messages to

each other. Each object contains data and code to manipulate the data. Objects can interact

without having to know the details of each other’s data or code.

ADT was first introduced in Simula 67. In Simula 67 ADT was named as class. A class is an

implementation of an object type. It specified the data structure and permissible operational

methods that apply to each of its objects. Different names are used in different programming

languages. All ADT implementations provide the developer a way for developing systems for

identifying real-world data types and combine them in a more convenient and concise form.

Various data types and methods may be accommodated in ADT. Once defined, the

developers can directly access ADTs later. That is why object technology has been widely

adopted and has become the standard for much of the software industry in which objects are

the core concept.

Objects take on different forms at different levels of abstraction. In OOP, objects are

characterized by attributes and operations i.e.

object = attributes + operations

 6

A method in a class or object manipulates only the data of that class. Methods can not

directly access the data structure of different class. To use the data structures of different

class, they must send a request to that object.

The heart of an ADT is defined by its data structure and its representation. For example, in

the above Figure 3.the ADT has INVENTORY data structure in which there are Item name,

Code, Qty and Price fields. The operations defined within the ADT provide permissible ways

for accessing the data within the ADT. Operations also protect the ADT from arbitrary and

unintended use. Simply speaking operations provide the only way for accessing and

maintaining the data within an ADT.

Figure 2. Organization of data and methods in OOP

INVENTORY

Item name

Code

Qty

Price

Abstract Data Type (ADT)

Data structure representation

Permissible Operations

Figure 3. Data structure and Operation within an ADT.

 Data

Method

Object A

 Data

Method

Object B

 Data

Method

Object C

 7

Operations within an ADT are processes that can be requested as units, which are called

methods. Methods are procedural specifications of an application within a class. The methods

in a class manipulate only the data structures of that class. They can not directly access the

data structures of a different class. To use the data structures of a different class, they must

send a request to that class.

class INVENTORY

{

char item_name[30];

int code;

int qty;

float price;

public:

 void getdata();

 void writedata();

 void purchase();

 void sell();

 void stock();

}

The above definition in C++ provides the way of binding data and operations within a class.

This way encapsulating data and operations protect the object from arbitrary and unintended

use.

Component Building Method

To build reusable component several concepts are applied on ADT. These are inheritance,

polymorphism, dynamic binding, message passing etc. Successfully applying the concepts on

ADT enables the ADT to be a reusable component. Now we discuss each concept separately.

 8

Inheritance

It is an important concept, which is applied to object to make it reusable. Inheritance means

the data structures and operations of a class physically available for reuse by its subclasses.

Using this concept it is possible to add new features to an existing class without modifying it.

This is done through deriving a new class from the existing one. The new class will have the

combined features of both the classes. Inheriting the operations from a super class enables

code sharing rather than data redefinition among the classes. Inheriting the data structure

enables structure reuse.

Inheritance may be in different form. It may be single or multiple.

 Single Inheritance refers to inheriting data structure and operation of a class from one

super class.

Product 1

011

Product 1

011

Product 1

011

Inventory
Inventory

Inheritance Inheritance
Inheritance

Inheritance

Inheritance
Inheritance

Figure 4. Inheritance of an ADT

(a) Single Inheritance (b) Multiple Inheritance

1 2

1 2

3

1 2

3 4

1 2

1 2

3

1 2

4

4

1 2

3
5

Purchase

Inventory

Stock

Inventory

P
u

rc
h

as
e

In
v

en
to

ry

S
el

l
In

v
en

to
ry

Stock

Inventory

Product 1

011

Product 1

011 Product 1

011

Product 1

011

 9

 Multiple inheritance means inheriting data structure and operation form more than one

super classes.

In Figure 4 (a) depicts single inheritance and (b) depicts multiple inheritance. Base class

Inventory has been used as super class in both cases. In single inheritance the Purchase

Inventory inherits methods 1 and 2 from the class Inventory. Purchase Inventory also has its

own operation 3. The class Stock Inventory inherits methods 1, 2 from Inventory and method

3 from Purchase Inventory. It has also its own method 4.

In case multiple inheritance Purchase Inventory and Sell Inventory classes inherit methods 1

and 2 from Inventory class and they have own method 3 and 4 respectively. The bottom class

Stock Inventory inherits methods 1, 2, 3 from Purchase Inventory and methods 1, 2, 4 from

Sell Inventory. Stock Inventory has also its own method 5.

In both cases of inheritance the bottom class has all methods available for reuse. In object

oriented design this generalization hierarchy is implemented using inheritance.

Polymorphism

Reuse of code is one of the major goals in object oriented techniques. However all operations

may not be used in the same form of the super class. There need customization of some

operations. On the other hand an organization may have different methods for reusing an

existing object. Although the methods for reusing are different they accomplish the same

operational purpose.

To develop a computer system, even systems for widely different areas, there is a high degree

of commonality between the abstract data types that are used (Ince, 1991). For example, table

is a data structure, which is used, in different names in different programming languages. The

items in the table may be different but the processing of items in the table is almost the same

in every programming language. As a result the structure may be replicated from one

application to another. Object oriented programming languages allow objects or classes to

 10

describe general objects that can be oriented towards a particular application. The feature is

known as polymorphism or genericity.

Polymorphism means the ability to take more than one form (Balagurusamy, 1999). For

example, an operation may exhibit different behavior in different instances. The behavior

depends upon the types of data used in the operation.

Polygon

Draw ()

Rectangle

Object

 Circle

Object

 Triangle

Object

Draw (rectangle) Draw (circle) Draw (triangle)

Figure 5. General form of polymorphism

Figure 5 illustrates that a single function name can be used to handle different number and

different types of arguments. When the function Draw() is invoked with arguments, the

required polygon is drawn according to the arguments passed. This is somewhat similar to a

particular word having several different meanings depending on the context. Thus via

polymorphism, object oriented programming languages enable a library of basic abstract data

types to be written which can then be reused from application to application.

Inheritance and Polymorphism

Inheritance and polymorphism features of OOP provide reusability of objects in various

ways. Different OOPLs have different inheritance mechanisms When a request for an

operation goes to a sub class, all of its permissible operations are checked whether the request

to be served or not. If the required operation is found on the list, it is invoked. Otherwise, the

parent classes are examined to locate the operation

 11

An important feature of inheritance is the ability of and ADT to override inherited features.

Polygon

Number of vertices

Vertices (point array)

Compute

Perimeter

Rotate

Resize

Move

… Copy

Circle

 ….

Compute

Perimeter

…

Rectangle

. . . .

Compute

Perimeter

…

Triangle

. . . .

Compute

Perimeter

…

Inheritance

Inheritance

Inheritance

 Same inherited operation

Fig.5 Inheritance and Polymorphism of objects

template <class P> class polygon

{

int vertices[n];

public:

 ploygon(); //Automatic constructor

 ~polygon() // Automatic destructor

 P obj();

 int count()

 void compute_perimeter(P Obj1, iff_err, &Err);

 void rotate(P Obj1, iff_err, &Err);

 void resize(P Obj1, iff_err, &Err);

 void copy(P Obj1, iff_err, &Err);

 void move(P Obj1, iff_err, &Err);

 void print(iff_err, &Err)

}

template <class P> class iterator

{

 iterator();

 ~iterator();

 void create(polygon<P> Obj, iff_err, &Err);

}

Figure 6. C++ Implementation of reusable polygon abstract data type.

 12

The processing of method or algorithm of an inherited operation can be redefined at the

subtype level. The example in Figure 6 illustrates four ADTs. The most general, Polygon,

contains the data structure and permissible operations for polygons. All operations defined

within the Polygon class are same for all sub classes except Compute Perimeter. The method

of computing perimeter differs from object to another. For this reason Compute Perimeter has

been inherited in each object. Although the operation for computer perimeter is inherited

from the Polygon, the method selected for Circle is located in the Circle ADT.

Dynamic Binding

It refers to the linking of a procedure call to the code to be executed in response to the call.

The code associated with a given function call is not known until the time of the call at

run-time. It is associated with polymorphism and inheritance. A function all associated with a

polymorphic reference depends on the dynamic type of that interface.

In Figure 5 the function Computer perimeter is called in every object. The method of

computing perimeter is unique to each object. So the function will be redefined in each class

that defines the object. At run-time, during the code matching the object under current

reference will be called.

Comparisons with the Conventional Approach

Although object-oriented technology have promoted software reuse, there is big gap between

the whole systems and classes. To fill the gap, many interesting ideas have emerged in

object-oriented software reuse for last several years. These include software architecture

(Gamma, 1995), design patterns (Fayad and Schmidt, 1997) , and framework (Meyer, 1994).

CBSD approach takes different reuse techniques in the following manner:

 13

 Plug & play: Component should be able to plug and play with other components

and/or frameworks so that component can be composed at run-time without

compilation.

 Interface-centric: Component should separate the interface from the

implementation details so that they can be composed without knowing their

implementation.

 Architecture-centric: Components are designed on a pre-defined architecture so

that they can interoperate with other components and/or frameworks.

 Standardization: Component interface should be standardized so that they can be

manufactured by multiple vendors and widely reused across the corporations.

 Distribution through market: Components can be acquired and improved through

competition market and provide incentives to the vendors.

The nature of CBSD suggests that it should be different from the conventional development

model in many respects. Table 1 summarizes major characteristics of conventional software

development and CBSD.

 Table 1. Comparisons of Conventional and CBSD Models

Characteristics Conventional Model CBSD Model

Architecture Monolithic Modular

Components Implementation and White-Box Interface and Black-Box

Process Big-bang and Waterfall Evolutional and Concurrent

Methodology Build form Scratch Composition

Organization Monolithic Specialized: Component

vendor, Broker and Integrator

Conclusions

Software reusability is the best way to develop large size software with low cost and

minimum effort, which concentrates on using existing components by adding new features to

 14

them. To make reusable components we need to apply various concepts on objects such as

inheritance, polymorphism, dynamic binding etc. In this paper, we proposed a method to

study the properties of an object and used them to build a component of an object oriented

programming language (OOPL). We also presented a comparison of our method with the

conventional one.

References

Aoyama, M., 1998. New age of Software Development: How Component-Based Software

 Engineering changes the way of software development, International Workshop, 1998.

Balagurusamy, E., 1999. Object-Oriented Programming with C++. Tata McGraw-Hill

 Publishing Company Limited 1999.

Fayad, M. E. and Schmidt, D. C., 1997. Object-Oriented Application Frameworks. CACM,

 Vol. 40, No. 10, oct. 1997.

Gamma, E., 1995. Design Patterns, Addison-Wesley, 1995.

Han, J., 1998. Characterization of Components. International Workshop on Component

 Based Software Engineering, 1998.

Ince, D., 1991. Object-Oriented Software Engineering with C++. Tata McGraw-Hill

 International Series in Software Engineering, 1991.

Martin, J. and Odell, J., 1992. Object-Oriented Analysis and Design. Prentice Hall,

 Englewood, New Jersey, 1992.

McClure, C., 1992. The Three Rs of Software automation: Reengineering, Repository, and

Reusability. Prentice-Hall Inc., New Jersey, 1992.

Meyer, B., 1994. Reusable Software: The Base Object-Oriented Component Libraries.

 Prentice Hall International(UK) Limited, 1994.

Shaw, M. and Garlan, D., 1996. Software Architecture. Prentice Hall, 1996.

