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A B S T R A C T                                                                                                                                       A R T I C L E   I N F O 

 
Electroencephalography (EEG) signal-controlled Brain-computer interface (BCI) 

schemes have created hope for physically impaired people to lead a stress-free life. 

It is quite challenging to preprocess EEG signals and make them eligible for use in 

neuro-robotics applications as there exist various categories of artifacts in the raw 

EEG signal. As physically disabled people need to perform real-time actions, this 

study proposes a real-time BCI scheme that is usable and efficient for neuro-robotics 

applications in their rehabilitations. The ultimate goal is to classify hand, foot, and 

tongue motions as four-class motor imagery (MI) task-related impulses using the 

more efficient classification technique in this study. The proposed approach achieves 

state-of-the-art levels of accuracy and a kappa score of 77.41% and 0.70, 

respectively, on the benchmark dataset taken. Classifiers such as Skl-ANN, SVM, 

LDA, and others have been evaluated for the experimental subjects. It is believed 

that the higher classification accuracy and lower processing load of the proposed 

BCI system will make it acceptable for usage in real-world settings to facilitate the 

rehabilitation and reintegration of physically impaired persons.   
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Introduction 

Numerous individuals experience physical handicaps 

such as limitations in the mobility of organs, vision 

impairments, skeletal injuries, and other physical 

defects caused by accidents making life stressful. Brain-

computer interface (BCI) gives a non-muscular mode 

for interacting with the world around utilizing invasive 

or non-invasive techniques. Through the blessings of 

applying human brain signals in neuro-robotics, the 

physically disabled can lead a stress-free life and 

perform human activities as an average person can.  

The brain-computer interface (BCI) strategy has 

recently evolved as a cutting-edge means for individuals 

to interact with computing devices along with other 

smart technical equipment. BCI allows users to control 

devices only through electroencephalographic (EEG) 

impulses that tap into the neurological activity of the 

cognitive cortex, rather than relying on physical 

movements via muscle and nerve signals. Motor 

imagery-based BCI is a significant human-computer 

interaction methodology among others for interpreting 

neural activities by detecting motor imagery task-

related EEG signals in human brain-computer 

paradigms. The brain rhythms are typically broken into 

certain frequency bands: delta: 0.5–4 Hz, theta: 4–8 Hz, 

alpha: 8–12 Hz, beta: 12–30 Hz, and gamma: > 30 Hz. 

Electroencephalography (EEG) is the most preferable in 

recording brain signals because of its prominence over 

others. 

The raw EEG signal consists of different artifacts 

like Environmental artifacts, Physiological artifacts, 

and Motion artifacts. These contaminated EEG signals 

need to be preprocessed and removed the artifacts for 

further use. The EEG signal usage is quite challenging 

as there is a tiny signal-to-noise ratio (SNR) in brain 

signals. After properly preprocessing and feature 

extraction, the signal can be applied to classify motor 

imagery (MI) movements like the hands, feet, and 

tongue. Classification of MI signals here refers to 

deciding which class the signal belongs to base on the 

discriminative characteristics. 

Over the course of the last several years, there has 

been a noticeable interest in EEG signal processing, 

motivating a growing number of academics to 
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concentrate their dedication to research on this area of 

study. Some of the methodologies have been 

highlighted in cutting-edge research works on EEG 

signal classification. Tasks requiring the use of the 

imagination to move the left and right hands, feet, and 

tongue have been the focus of a great deal of BCI 

research. The wavelet decomposition (WD) extension is 

known as WPD. This method uses a number of bases, 

and the choice of base will affect the classification 

performance and address the DWT's lack of set time-

frequency decomposition (Xue et al., 2004). Feature 

extraction and classification strategies are the primary 

areas of research in pattern recognition. Common 

Spatial Patterns (CSP), Filter-bank CSP (FBCSP), 

Principal Component analysis (PCA), Independent 

Component Analysis (ICA), and Riemannian methods 

are all types of feature extraction techniques. 

Techniques like Linear Discriminant Analysis (LDA), 

Support Vector Machines (SVMs), and Convolutional 

Neural Networks (CNNs) are frequently used for 

classification. 

To parse MI-EEG from the BCIC-IV-2a dataset, 

Ma et al. (2023) presented a convolutional neural 

network (CNN) with a method of attention that 

integrates spatial and spectral details from multi-view 

EEG data. Interdependencies between discriminative 

characteristics are captured by the temporal attention 

mechanism. Grosse-Wentrup & Buss (2008) noted that 

CSP by means of joint approximation diagonalization 

(JAD) has similar to independent component analysis, 

or ICA, while applied to multiclass schemes of thought. 

They also provided a method for choosing independent 

components (ICs) that approximately achieve 

maximum the mutual information across ICs and class 

labels. As a result, prior class probabilities can be taken 

into account and heuristics for multiclass CSP are no 

longer necessary. In contrast to the multiclass CSP, the 

proposed approach increases the mean rate of 

classification accuracy about 23.4% when utilized on 

dataset IIIa for the 3rd BCI competition.  

Combining a CNN with an effective channel 

attention (ECA) subsystem was the strategy put out by 

(Tong et al., 2023). Channel weights are assigned by the 

ECA subsystem according to their category relevance. 

During a four-class classification goal, experiments 

were carried out using the BCI Competition IV dataset, 

and an average accuracy of 75.76% occurred using all 

22 channels. Alnaanah et al. (2022) demonstrated CNN 

models like Basic, CNN1D, CNN2D, CNN3D, 

TimeDist, CNN1DMF and evaluated on Physionet and 

BCI Competition IV-2a dataset. Among them 

CNN1DMF model achieves best accuracy of 58.0% and 

69.2% for Physionet and BCI Competition IV-2a 

datasets, respectively. The limitation is CNN2D, 

CNN3D, and TimeDist have low accuracy and kappa 

values here. Also high complexity of models leads to 

overfitting and longer training times.  

In this research, we utilize the BCI competition IV 

2a dataset to classify four exclusive MI tasks: left-right 

hand movements, foot movement, and tongue motion 

(Tangermann et al., 2012). As classification accuracy 

plays a vital role in neuro-robotics research, enhancing 

classification accuracy is essential. A highly accurate 

classified EEG signal instruction can be parsed in 

neuro-robotics applications to rehabilitate physically 

disabled people. Movement of the hands, legs, eyes, 

tongue, and other body parts causes shifts or changes in 

the EEG signal. Furthermore, we also see differences in 

the EEG signals when a person attempts to imagine such 

a movement, i.e., motor imagery movement. For our 

experiment, we separated left, right, foot, and tongue 

motions, as well as those performed with motor 

imagery. The primary objectives of the research are 

pointed in the following:  

 To find the best technique of gaining artifact-

free EEG signal. 

 To classify four-class motor imagery signals 

such as left-hand, right-hand, foot, and tongue 

movement. 

 To test the accuracy factors of the scheme. 

 

This work is arranged into sections accordingly, 

beginning with the Introduction, which discusses the 

BCI idea and our purpose. The literature review part 

discusses relevant research analysis and study concepts. 

The Materials and Methods section describes our 

proposed strategy, the dataset, experimental 

configuration, and the experimental procedures. The 

stated methodology's output is shown in the Results and 

Discussion section. The performance-measuring 

criteria are also mentioned. The results are analyzed 

using several comparison charts. The conclusion 

summarizes and completes the work. Future 

employment information is also presented. The Data 

Availability declaration and the Acknowledgment 

portion are inserted suitably following the Conclusion 

part of the writing.  

 

Literature Review 

Over the course of the last several years, there has been an 

increase in interest on EEG signal processing, leading a 

growing number of academics to concentrate their efforts 

in this area of study. There is a significant body of research 

available on EEG signal. From among the numerous 

published works, we selected a limited handful that dealt 

with the EEG signal feature extraction and classification.  

Tasks requiring the use of the imagination to move the 

left and right hands, feet, and tongue have been the focus 

of a great deal of BCI research (Ang et al., 2012), (Chin et 

al., 2009). Feature extraction and classification strategies 

are the primary areas of research in pattern recognition. 

Common Spatial Patterns (CSP), Filter-bank CSP 

(FBCSP), Principal Component analysis (PCA), 

Independent Component Analysis (ICA), and Riemannian 

methods are all types of feature extraction techniques 

(Feng et al., 2019). Techniques like Linear Discriminant 

Analysis (LDA), Support Vector Machines (SVMs), and 

Convolutional Neural Networks (CNNs) are frequently 

used for classification.  

The previously described Riemannian techniques 

have been integrated with SVM classifiers, resulting in a 

classification accuracy of 75% on the BCI IV II a dataset 

(Yger et al., 2017). Schirrmeister et al. (2017) presented a 

method that combines the sliding time windows approach 

with a convolutional neural network (CNN) to acquire the 

temporal and spatial characteristics of EEG signals, 



Mitul & Ferdous                                                                                                                     Khulna University Studies 22(1):49-61:2025 

51 

therefore expanding the training set capacity and 

enhancing the classification performance. In addition to 

MI identification tasks, this technique has also been used 

to facial recognition and other disciplines. Previous studies 

have flaws. Same algorithm affects various participants 

differently. 
 

Table 1: Summary of the literature review 

 
 
Kumar et al. (2016) and Yang et al. (2015) proposed 

the usage of multilayer perceptron (MLP) as a classifier. 

Dose et al. (2018) suggested a DL model that achieved a 

global average accuracy of 68.51% by making use of CNN 

layers for the purpose of learning generalized features and 

dimension reduction, in addition to making use of a 

traditional fully connected (FC) layer for classification. 

Extreme learning machines were utilized by Gao et al. 

(2016) for the purpose of enhancing the classification of 

motor imagery BCI data. The classification of motor 

imagery (MI) tasks was accomplished by Hou et al. (2020) 

using a combination of the scout EEG source imaging 

(ESI) approach and the convolutional neural network 

(CNN). Pfurtscheller et al. (2006) demonstrated that foot 

and tongue motor imageries had a more tenuous decrease 

in energy than left- and right-hand motor imageries; hence, 

they are more likely to form an energy pattern in particular 

channels and frequencies. Therefore, it is necessary to 

develop a method that can extract temporal data and 

interact with static energy features to construct a classifier 

that can then handle a broader range of motor imageries; 

one possible and relatively novel approach could be the 

deep learning subfield of machine learning. These 

techniques have the ability to uncover previously 

unnoticed characteristics in a greater variety of data. 

Convolutional Neural Network (CNN), initially suggested 

by Lecun et al. (1998) is the approach that has achieved 

promising results in various domains. Compared to 

shallow classification algorithms, CNNs have proven to be 

effective when applied to the classification of EEG data. 

Uktveris & Jusas (2017) conducted a classification of four-

class motor imagery using a variety of feature extraction 

approaches, with an average accuracy of 68%, making 

their work among those aiming to classify various motor 

imageries. 

Several attempts were made to use deep learning, 

namely a convolutional neural network, to find out what 

limits a single classifier's effectiveness. However, despite 

deep learning's success in a wide range of applications, 

multiclass EEG-MI classification has not yet achieved 

state-of-the-art levels of accuracy. It is important to fine-

tune deep learning's hyper-parameters and setup, as well as 

address other challenges including the volume of training 

data required. Additionally, the hyper-parameters and 

setup for deep learning models are unique for each 

participant in many of the earlier research (Olivas-Padilla 

& Chacon-Murguia, 2019; Xu et al., 2019; Amin et al., 

2019). According to the results of earlier multi-class 

investigations, EEG-MI classification still has room for 

advancement since its performance as well as the kappa 

coefficient remains subpar. In their experiments, Nguyen 

et al. (2017) demonstrated the superiority of their proposed 

approach over competing approaches like LDA, k-nearest 

neighbor, ensemble learning, NB, AdaBoost, and SVM. 

They used the multiclass motor imagery dataset IIa from 

the BCI competition IV. Experiment results demonstrate 

the high accuracy of the CSP and FLS combo. 

Among current methodologies for EEG data 

processing (e.g., time-frequency analysis and nonlinear 

dynamics methods, artificial neural networks (ANNs) are 

the most promising and efficient tools for classifying of 

single EEG trials. The effective implementation of ANNs 

requires the proper choosing of the parameters, which may 

vary greatly depending on the job and topic (Bashashati et 

al., 2015). As a result, one of the important difficulties for 

the development of effective ANN-based BCIs is the 

optimization of EEG inputs (dimensionality reduction, 

filtration, etc.) and channel selection. 

Authors Used Techniques Dataset Applications 

Yger et al., 2017 MDM – Riemannian Kernel Not Specified 
Real-time programs employing adaptive 

approaches. 

Schirrmeister et al., 2017 FBCSP – ConvNets 
BCI Competition 

IV Dataset 2a 

ConvNet-driven EEG interpretation systems 

in real-world uses 

Dose et al., 2018 1D – CNN 
Physionet MI 

Dataset 
User-Friendly BCI Systems 

Hou et al., 2020 ESI – CNN 
Physionet MI 

Dataset 
User-Friendly BCI Systems 

Uktveris & Jusas, 2017 FFT – CNN 
BCI Competition 

IV Dataset 2a 
Improved Rehabilitation Systems 

Nguyen et al. (2017) CSP – PSO – FLS 
BCI Competition 

IV Dataset 2a 
Improved Rehabilitation Systems 

Zouch & Echtioui, 2022 WPD – CSP – 3CNN 
BCI Competition 

IV Dataset 2a 
User-Friendly BCI Systems 

Hu et al., 2023 CS – CNN 
BCI Competition 

IV Dataset 2a 
Future Research Guide 
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Figure 1: Block diagram of the proposed methodology 

 

Recently, neural network-based classifiers that do 

better in data-rich, non-linear clustering tasks like MI 

decoding were brought up as a possible way to make the 

CSP algorithms better. In particular, the Sequential 

Backward Floating Selection method and a radial basis 

function neural network (RBFNN) were suggested as a 

possible better algorithm for BCIs. These two methods 

would be used to choose the best CSP features (Bhatti et 

al., 2019). Recent studies show that several machine 

learning (ML) approaches, particularly deep learning 

(DL), are gaining favor regarding EEG-based MI 

classification (Yu et al., 2022). Zouch & Echtioui (2022) 

came up with a method based on combining three CNNs. 

When evaluated using the nine individuals from the BCI 

Competition IV 2a dataset, this approach got a remarkable 

accuracy score of 64.75%. The CS-CNN technique solves 

the shortcomings of contemporary approaches and offers a 

strong framework for MI-EEG classification, resulting in 

a substantial contribution to the area of BCI (Hu et al., 

2023). The literature review is summarized in table 1. 

 

Materials and Methods 

This paper presents a strategy for MI-task distinction that 

employs WPD to separate signal packets that are received 

CSP to extract features, and a model based on machine 

learning to classify data. Introducing a series of 

preprocessing procedures enhances the signal-to-noise 

ratio (SNR). Figure 1 depicts the conceptual flow diagram 

illustrating the proposed scheme. Following are the 

particulars of the EEG dataset and the methodologies 

performed for this study. 

Experimental Configuration 

The experimental arrangement employed in this empirical 

study is outlined below: 

 

Experimental Dataset 

In this study, the BCI IV 2a dataset (Brunner et al., 2008) 

is employed for four-class MI task classification. Here, 

four subjects' EEG signals are taken, each consisting of 25 

channels (3 EOG channels) of the recorded signal. Cue-

based brain-computer interfaces involve four specific 

motor imaging tasks: left hand (class 1), right hand (class 

2), foot (class 3), and tongue (class 4). There are 288 trials 

per session, with each class comprising 48 trials (12 per 

class). In all, there are 288 trials completed throughout 

each session (Tangermann et al., 2012). 

 

Signal Preprocessing 

The preprocessing is the initial step after preparing the 

dataset and loading the raw signal data. By this step, the 

dataset is ready to apply the proposed feature extraction 

method to extract important features. Based on the 

markers provided with the dataset, the data was 

contaminated by 3 EOG channel signals among 25 

channels (Figure 2). So, we need to preprocess the 

dataset and make it suitable for further processing by 

good channels. Before the EEG pattern could be used 

for feature extraction, identification, and prediction, it 

had to go through several preprocessing steps. 

 

Filtering 

From the literature, we may deduce that the majority of 

motor-imaging-related brain activity occurs between 7 

and 40 Hz or between 12 and 30 Hz (Joyce et al., 2004). 

That’s why we only need the signals that lie in that 

frequency range. Therefore, we filtered the raw EEG 

signal dataset for a subject by finite impulse response 

filter with Hamming window with 0.0194 passband 

ripple and 53 dB stopband attenuation where the lower 

passband frequency edge: is 7.00 Hz and upper 

passband edge: is 35.00 Hz. The filtering process also 

removes the physiological artifacts arising from eye 

blinks and movements (Figure 3). 

 

EOG Artifacts Removing 
After filtering the signal in a certain frequency range the 
EOG artifacts are removed (Figure 4). Three EOG 
channels are 'EOG-left', 'EOG-central', and 'EOG-right' 
which are contained in the dataset. After removing those 
the dataset only contains 22 good EEG channels. From 
these 22 EEG channels signal we would find our four 
class MI EEG activity such as Left-hand (LF), Right-
hand (RF), Foot (F), and Tongue (T). The four class MI 
events annotations in the dataset are ‘769’, ‘770’, ‘771’, 
and ‘772’ for Left-hand (LF), Right-hand (RF), Foot 
(F), and Tongue (T) respectively (Brunner et al., 2008). 
This process removes the physiological artifacts arising 
from eye blinks and movements for providing a clean 
EEG signal. After filtering we also segment according 

Hardware : Laptop (8 GB RAM, 64 Bit) 

Coding Language : Python 

Coding notebook : Google Colaboratory (12 GB RAM) 

Dataset : BCI Competition IV-2a 

Toolbox : MNE-Python 
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to the event and extract epochs of 3s time period from 
the dataset into 288 events for all 4 classes. 
 

Events Marking 
There are many kinds of events, but we only need four 
types of events, namely (Figure 5): left-hand ‘769’, 
right-hand ‘770’, foot ‘771’, and tongue ‘772’. 

Events Epoch Averaging 
After being stimulated by a flash or sound, the brains of 

subjects will produce different types of potentials, 

which are called evoked potentials. In order to solve 

these evoked potentials, we need to average the signals.

Figure 2: Raw EEG signal with EOG artifact. The 25 channels are shown in the vertical left side in the figure labeling the 

channel names. There exists 3 EOG channels which we have to remove 

  

Wavelet Packet Decomposition (WPD) 
Wavelet packet decomposition, sometimes known as 
WPD, is a method for processing signals that is based 
on the concept of wavelet transformations. 
Decomposing a signal into a collection of wavelet 
packets, which are sub-bands of the signal and include 
a variety of distinct frequency components, is a 
necessary step in the process. In order to acquire more 
sub bands, the WPD method first recursively divides the 
frequency range of the signal into smaller sub bands. 
After that, wavelet transformations are applied to each 
sub band in order to generate additional sub bands. This 
procedure will continue until the required degree of 

breakdown has been attained. After the signal has been 
broken down into wavelet packets, different kinds of 
processing and analysis can be carried out on each sub-
band. For example, filtering, feature extraction, and 
compression are some of the possible operations. Since 
distinct frequency components can be manipulated 
independently thanks to this, signal processing can be 
made more efficient and precisely targeted. The method 
of wavelet packet decomposition finds usage in a 
diverse array of applications, such as the processing of 
audio and images, the compression of data, and the 
study of biological signals (Samar et al., 1999). 
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In this study, we employed Wavelet Packet 
Decomposition (WPD) function. Wavelet 
decomposition and wavelet packet decomposition are 
two distinct processes. Both of these instruments are 
suitable for the investigation of non-stationary data, 
such as our electroencephalogram (EEG), for example, 
which is a non-stationary signal. Wavelet Transform 
only decomposes the low-frequency component of the 
signal further, but Wavelet Packet Decomposition may 
decompose both the low-frequency and high-frequency 

parts of the signal. The signal is decomposed to level 5 
with 'db4' wavelet. Eight frequency band coefficients 
are selected from the 4-32 Hz range. This is comparable 
to taking each channel of each epoch and decomposing 
it into a five layer binary tree for wavelet packet 
decomposition (Pawan & Dhiman, 2022). After this, 
convert labels by employing One Hot Encoder. It is a 
code in which one bit is 1 and the other bits are 0. For 
example, red, 100; Yellow, 010; Blue, 001.  

Figure 3: Filtered EEG signal with EOG artifact. The figure visualizes a clean signal with all the channels. The signal is 
smooth enough to extract features 

 
Common Spatial Pattern (CSP) 
Feature extraction is the most crucial step, since 
classifier performance would suffer if the features are 
not properly extracted. Extraction of features is the 
collecting of relevant information from a signal. 
Features are signal properties that may differentiate 
between distinct physical movements. Extraction of 
features from a huge amount of output data is referred 
to as feature extraction. To extract excellent features 
from the original signals, which would have a 
significant influence on the classification accuracy of 

EEG signals, it is crucial to use a precise approach for 
feature extraction. It has been shown that common 
spatial pattern (CSP) is a rather effective approach for 
feature extraction. 

Multiclass CSP's goal is to categorize 

electroencephalogram (EEG) signals from several MI 

instances or classes. Most research has employed 

numerous modifications of two-class models to obtain 
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multiclass the case of BCI which is needed in a real 

system. By breaking down the classification into many 

two-class sub-problems, multiclass issues may be 

handled. Joint approximation diagonalization (JAD) 

serves as the foundation for the expansion of CSP to 

multiclass issues (Grosse-Wentrup & Buss, 2008). JAD 

seeks to concurrently diagonalizable more than two 

matrices. Concurrent diagonalization of the average 

covariance matrices across all classes is the goal of CSP 

based on JAD. As a result, a single level is used to 

extract the discriminative characteristics for each 

multiclass paradigm.

 

Figure 4: Epoched artifact free EEG signal where the 3 EOG artifact comprising channels are removed. Only 22 EEG 

channels are kept for feature extraction 

 

Classifier Training and Testing  
Classification is basically the identification of a class 
from a collection of features taken from signals. After 
extracting the necessary features, we must determine 
which movement is performed by a human. A classifier 
performs this function. A classifier is often a system that 
classifies certain data into multiple classes and the 
movement that corresponds to that portion of the EEG 
signal.  

In this work, we first build the proposed ANN 
classifier by necessary components (Figure 7). After 
that, the CSP features are fed into the proposed ANN 
classifier to classify the four classes (Left-hand, Right-

hand, Foot, Tongue) MI EEG signal. By decreasing the 
complexity of a learning model, ANN may generalize 
classification issues. The ANN is a powerful tool in 
high-dimensional environments, and it is especially 
useful in document classification and sentiment 
analysis, where the dimensionality may be exceedingly 
high (Sarker, 2021). Class separation is often nonlinear. 
The capacity of the ANN to apply fresh kernels provides 
for significant flexibility in decision boundaries, 
resulting in improved classification performance. 

In our work, we built a three-layer ANN (Figure 7), 
wherein the first layer the dense layer input dimension 
is 32. To prevent overfitting and improve generalization 
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ability, regularizers l2 and dropout are used. The ReLU 
is used here, which is a piecewise linear activation 
function that returns the input value unmodified if it is 
positive and zero otherwise. Since we must divide 
signals into four categories, the final layer (called the 
output layer) contains four output units. In this case, 
softmax is employed as the activation function. 
Optimizer: rmsprop, loss function: categorical cross-
entropy, and metrics: accuracy were employed in the 
compilation process to determine efficacy. Once the 
model has been fitted, a forecast can be made, and the 
performance may be assessed by testing. The training 
and testing split is 80% and 20%, respectively. 

 

Figure 5: Signal events are marked here. From the 
events we need the four types of events which are 
marked with class 1, class 2, class 3, and class 4, 
respectively 

 

Code Replication 
To aid in understanding the procedure, a pseudocode 
replication of the methodology is included below in a 
nutshell. 
 
1. Load and Preprocess EEG Data 
 
# Load Data 
LOAD raw EEG data using `read_raw_gdf(filename)` 
# Preprocessing 
FILTER raw EEG signal with a bandpass filter 
MARK bad channels as `bads` in raw data (e.g., EOG 
channels) 
SELECT only EEG channels, excluding bad channels 
and EOG channels 
# Event Detection 
DETECT events from EEG data annotations using 
`events_from_annotations(raw)` 
# Define Event IDs 
DEFINE event IDs for motor imagery tasks:  
'left_hand' : 769 ... 
# Epoch Extraction 

EXTRACT epochs from raw data with time window 
around each event 
 
2. WPD 
 
# Define Wavelet Packet Decomposition Function 
FUNCTION Wavelet_Packet_Decomposition: 
APPLY wavelet packet decomposition using 'db4' 
wavelet on EEG signal 
RETURN decomposition coefficients up to max level 5 
# Extract Features for Each Epoch 
FOR each epoch in EEG data: 
FOR each EEG channel: 
COMPUTE wavelet packet decomposition coefficients 
SELECT specific frequency band coefficients 
STORE coefficients in the feature matrix `Bands` 
 
3. CSP 
 
SPLIT data into training and testing sets 
# Apply CSP Filters for Feature Extraction 
FOR each frequency band in specified range: 
INITIALIZE CSP filter 
FIT CSP filter on training data and transform training 
data 
TRANSFORM testing data using fitted CSP filter 
# Standardize Data 
STANDARDIZE training and testing data using 
StandardScaler 
 
 
4. Artificial Neural Network (ANN) 
 
# Define ANN Model Architecture 
FUNCTION Define_ANN_Model: 
INITIALIZE Sequential ANN model 
ADD input layer with `num_units` and activation 
ADD dropout layer with `dropout_rate` 
# Add Hidden Layers 
FOR each layer in `num_layers`: 
ADD dense layer with `num_units`, activation, and L2 
regularization 
ADD dropout layer with `dropout_rate` 
# Output Layer 
ADD output layer with specified units and specified 
activation for classification 
 
5. Model Training and Evaluation 
 
# Train ANN Model 
INITIALIZE ANN model using `Define_ANN_Model()` 
TRAIN ANN model 
# Predict and Evaluate 
PREDICT classes 
CALCULATE performance metrics: accuracy, kappa 
score, precision 
STORE metrics in corresponding lists
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Figure 6: The 1st CSP filter is plotted before and after transformation as a function of time. The plot provides a visual 
representation of the CSP filters and their effect on the EEG data. The CSP filter is applied separately to each frequency 

band coefficient 
 
 

 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

  
Figure 7: Proposed ANN classifier model structure 

 

Results and Discussion 
In this section, the experimental findings for MI task 
separation that have been accomplished on the BCI 
competition IV dataset 2a and proposed model 
performance will be presented.  
 

Performance Metrics  
The accuracy of the proposed approach in this study is 
assessed using Eqn. 1, the Kappa score is determined using 
Eqn. 2, and the precision is calculated by Eqn. 3. 
 

𝑎𝑐𝑐 =
∑

𝑇𝑃𝑖
𝑆𝑖

𝑀
𝑖=1

𝑀
  (1), 

Where TPi represents the true positive that means the 
number of correctly classified samples in class i, Si 
represents the number of samples in class i, and M means 
the number of classes. 

 
Cohen’s κ-score, which is calculated as: 
 

𝜅 =
1

𝑀
∑

𝑃𝑎𝑐−𝑃𝑒

1−𝑃𝑒

𝑀
𝑎𝑐=1  (2), 

 
Where M means number of classes, Pac is the actual rate of 
agreement, and the expected percentage likelihood of 
agreement is denoted by Pe. 
 
Precision calculation equation is as like: 
 

𝑝𝑟𝑒𝑐 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
    (3) 

 
Where TP is true positive and FP is false positive. 
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Subject Wise Cross Validation Result  
To begin, we will illustrate the performance of the 
classification by the proposed method in accordance with 
the subjects (Fig. 8-11), respectively. Here, the evaluation 
result is shown for four subjects taken from the intended 
dataset, and 5-fold cross-validation is used. 

Using the proposed strategy results in an average 
classification accuracy rating of 77.41% for the four 

subjects taken. The figures show that the subject A03's 
accuracy, precision value, and kappa score were all at 
84.48%, 85.25%, and 0.79, respectively, which is the best 
result the proposed method could produce (Fig. 9). For the 
rest of the subjects, the proposed method outperforms 
cutting-edge techniques for classifying EEG data into four 
classes related to motor imagery. 

 

 Figure 8: Classification result for subject A01 
 

 Figure 9: Classification result for subject A03 
 
 

 

 Figure 10: Classification result for subject A07 
 

 Figure 11: Classification result for subject A08 
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Comparative Analysis  
The SVM, KNN, LDA, and Skl-ANN classifiers have 

been fitted to analyze the proposed method’s 

classification efficiency. As we can see, the proposed 

model has a higher average accuracy than the others. The 

following (Fig. 12) compares the predictive power of the 

methods for classifying data.  

The average classification accuracy rate while using 

the proposed model is 77.41%. However, when the SVM, 

KNN, LDA, and Skl-ANN classifier models are 

employed, the best average classification accuracy of 

82.07%, 78.62%, 82.07%, and 81.31% is attained, 

respectively, for the subject A03. The proposed model 

outperforms the others by providing an accuracy of 

84.48% for subject A03. This is why the proposed model 

performs better than state-of-the-art methods (Table. 2) 

for classifying EEG signals into four classes associated 

with motor imagery. With some further tweaking, we 

anticipate a more accurate classification in the near future. 

 
 

Figure 12: A comparative analysis of accuracy with other 
classification algorithms we experimented with for all the 
subjects tested is visualized in the chart above. Here, we 
observe that the proposed technique surpasses the others. 

 
Table 2: A comparative analysis of the proposed method with others. Here, the proposed method attains maximum 

accuracy and kappa than others 

 

Limitations  

This is done methodically and precisely to make the final 

result more palpable. Completed are data preparation, 

filtering, artefact removal, feature extraction, and 

classification chores. At last, the performance measures 

help to gauge it. Still, some of the obstacles still exist: 

extremely non-linear and prone to noisy EEG signals 

hamper accurate feature mining and classification tasks. 

For the need of thorough hyperparameter tweaking, the 

computational cost of optimizing the classification model 

is considerable. With future efforts, maybe the limitations 

ought to be transcended for greater impact outcomes. 

 

Conclusion  

The BCI) technology is a fascinating field of research and 

it is growing quickly. BCI schemes can facilitate people to 

control smart devices and interfaces without having to 

touch them physically. They do this by picking up and 

interpreting electrical signals from the brain. However, 

developing effective BCI systems requires overcoming 

numerous technical challenges, including how to process 

and interpret complex and noisy signals. With the 

proposed method, it has been seen that setting up the 

classifier with the right method is a big problem and 

unique feature extraction is also needed. Compared to 

other methods, the proposed method works better for the 

dataset without changing or adding to the recorded data. 

So, it is hoped that this idea will work better than the 

traditional way of using BCI in the real world. 

Because EEG signals provide substantial 

contributions to biomedical science, rigorous analysis of 

EEG signals is required in the research field. One of the 

major issues in modern biomedical research is how to 

reliably classify MI movement-based 
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CSP+KNN (Nguyen et al., 2017) 67.86 59.31 

Ensemble (Nguyen et al., 2017) 67.98 59.26 

CSP+LDA (Nguyen et al., 2017) 71.24 63.49 

CSP+NB (Nguyen et al., 2017) 70.38 62.33 

CSP+SVM (Nguyen et al., 2017) 71.16 63.54 

CSP+FLS (Nguyen et al., 2017) 72.96 65.71 

Proposed 77.41 70.00 



Mitul & Ferdous                                                                                                                     Khulna University Studies 22(1):49-61:2025 

60 

electroencephalographic (EEG) data, which subsequently 

leads to the BCI system, which is critical for various motor 

handicapped patients. The future study will concentrate on 

more research into EEG signal processing and its 

relationship to various physiological movements. It will be 

attempted to apply the executed technique in real-world 

applications such as controlling certain hardware such as 

iron-hands or feet, wheelchairs, and a variety of useful 

amenities that benefit both impaired and non-disabled 

individuals in the BCI system. In future studies, it will be 

looked at ways to enhance this algorithm such that it 

produces better results than current EEG signal 

classification algorithms. The future step will also be 

turning the results of the classification into instructions 

that can be deployed on the BCI applications by interfacing 

robotic actuators. Before that, various performance 

assessment results will be assessed to evaluate how better 

the proposed approach is against the state-of-the-art 

model. 

 

Data Availability  

The BCI Competition IV 2a data (Brunner et al., 2008) 
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https://www.bbci.de/competition/iv/#datasets. 
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