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Game theory is a modern branch of mathematics that provides a powerful framework 

for strategizing and analyzing situations previously which is difficult to represent 

mathematically. In this paper we investigate the decision-making strategies of two 

competing bus companies, employing game theory as the primary analytical 

framework. Additionally, we employ linear programming models to support the 

findings derived from game theory techniques. By integrating these methods, we 

aim to offer a comprehensive analysis of competitive strategies and optimal 

decision-making for both companies, thereby demonstrating the practical 

applications of mathematical theories in real-world scenarios. The main purpose of 

this paper is to explore the efficiency of two methods named Game theory and Linear 

programing on the contrast of a transportation problem. 

 

Article timeline: 

Date of Submission:  

21 November, 2024 

Date of Acceptance: 

23 June, 2025 

Article available online:  

30 June, 2025 
 

Keywords: 
Decision-making; game 
theory; linear programming; 
Payoff; Matrix. 
 

 

Introduction 

In competitive transportation systems, effective 

scheduling is essential for maximizing service efficiency 

and passenger satisfaction. Mathematical tools like game 

theory and linear programming provide structured 

methods for analyzing such decision-making problems. 

Game theory models strategic interactions between 

competitors, while linear programming focuses on 

optimizing outcomes under defined constraints. 

Despite their widespread use, few studies directly 

compare these approaches within the same problem 

setting. This paper addresses that gap by examining a 

scheduling problem involving two competing bus 

companies, both aiming to maximize daily passenger 

numbers under specific operational constraints 

 
Literature Review 

Game theory has increasingly been utilized to model 

complex interactions in transportation systems. For 

instance, Shen et al. (2024) proposed a game-theoretic 

lane-changing decision model for autonomous vehicles, 

enhancing safety and efficiency in traffic flow. Similarly, 

Zhang et al. (2023) developed a decision-making 

framework that accounts for drivers' social value 

orientations, improving autonomous vehicles' adaptability 

in mixed traffic environments. Moreover, Zambrano et al. 

(2025) introduced a user-friendly game-theoretic 

modeling tool for multi-modal transportation systems, 

facilitating stakeholder analysis and policy-making. 

While both Game Theory and Linear Programming 

have been applied extensively in transportation research, 

there is a paucity of studies directly comparing these 

methodologies within the same decision-making context. 

Most existing research focuses on either strategic 

interactions (Game Theory) or optimization problems 

(Linear Programming) in isolation. This approach limits 

the understanding of how these methods perform relative 

to each other in practical scenarios, such as transportation 

scheduling problems involving multiple stakeholders with 

competing objectives. 

The current study addresses this gap by conducting a 

comparative analysis of Game Theory and Linear 

Programming in the context of a transportation scheduling 

problem. By applying both methodologies to the same 

problem, the study provides insights into their respective 

strengths and limitations, offering a more holistic 

understanding of decision-making tools in transportation 

planning. This comparative approach is particularly 

valuable for policymakers and practitioners seeking to 

select appropriate analytical methods for complex 

transportation issues.
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Required Theorems 

Theorem 1  

 In a mixed-strategy Nash equilibrium [10], each player 

must be indifferent among all the pure strategies that they 

are mixing. That is, each of these pure strategies must yield 

the same expected payoff, given the strategies of the other 

players (Indifference Theorem).  

For a matrix game with 𝑚 × 𝑚 matrix A, if Player 1 

uses the mixed strategy 𝑝 = (𝑝1 , … , 𝑝𝑚)𝑇 and Player 2 uses 

column j, Player 1’s average payoff is ∑ 𝑝𝑖𝑎𝑖𝑗
𝑚
𝑖=1 . If V is 

the value of the game, an optimal strategy, 𝑝, for 1 is 

characterized by the property that Player 1’s average 

payoff is at least V no matter what column 𝑗 Player 2 uses, 

that is 

                      ∑ 𝑝𝑖𝑎𝑖𝑗
𝑚
𝑖=1 ≥ 𝑉    ∀ 𝑗 = 1, … , 𝑛 

Theorem 2  

Any two dual games [11] are always feasible with a 

bounded feasible region and thus have optimal solutions 

with a common optimal value, namely the value of the 

game. In other words, for every finite two-player zero-sum 

game, the primal game and its dual game have the same 

value (Duality in Game Theory). 

Theorem 3 

 For a primal problem, 𝑀𝑎𝑥 𝒛 =  𝐜T𝐱 subject to  𝐴𝒙 ≤
𝒃, 𝒙 ≥ 0 and its dual problem 𝑀𝑖𝑛 𝒘 =  𝐛T𝐲 subject to 

𝐴𝑇𝒚 ≥ 𝒄, 𝒚 ≥ 0, if x0 and y0 are feasible solutions to the 

primal and dual problems respectively, the following 

inequality holds, 

𝐜Tx0 ≤ 𝐛T𝑦0 

This is known as the Weak Duality Theorem [12]. The 

weak duality theorem ensures that no matter what the 

feasible solutions x0 and y0 are chosen, the value of primal 

objective function will never exceed the value of the dual 

objective function.  

Theorem 4   

If there are feasible solution 𝑥∗ and y∗ such that 

𝐜Tx∗ = 𝐛Ty∗   

This is known as the Strong Duality Theorem [13,14]. 

𝑥∗ and 𝑦∗ are optimal solutions to the primal and dual 

problems respectively. Strong duality theorem tells us that, 

when both problems have optimal solutions, the maximum 

value of the primal objective function will equal the 

minimum value of the dual objective function, which 

provides a direct relationship between the two problems. 

 

Theorem 5   
If a dual variable is greater than zero or slack then the 

corresponding primal constraint must be an equality and if 

the primal constraint is slack then the corresponding dual 

variable is tight. This is known as Complementary 

Slackness Theorem [15]. 

 

A Transportation Problem 

Two private inter-city bus companies, let’s call them 

Company A and Company B, are about to operate their 

services. The companies are required to meet some criteria 

by the license-providing department of the authorities. 

    Let the specifications be as follows 

 Both companies must schedule 5 buses per day 

 The time interval between the departure of two buses 

must be 3 hours for both companies 

 The departures are at the beginning of an hour 

    For the sake of simplicity, we assume some more 

criteria for the passengers, which are mentioned below 

 20 passengers gather at the bus station at each hour 

 The passengers split equally between two companies 

buses if both buses depart at the same time 

 If a passenger has to wait for more than 3 hours, s/he 

will take a different mode of transportation 

 The passengers will take the next earliest bus if there 

are no immediate buses to get on 

    The only decision left for companies A and B to make 

is when they should start in the morning. They want to 

maximize the number of passengers on their buses as each 

company’s payoff is proportional to that number. 

    Let the possible schedules be –  

S1: the first bus departs at 06:00, so the later ones depart 

at 09:00, 12:00, 15:00, and 18:00 respectively 

S2: the first bus departs at 07:00, so the later ones depart 

at 10:00, 13:00, 16:00, and 19:00 respectively 

S3: the first bus departs at 08:00, so the later ones depart 

at 11:00, 14:00, 17:00, and 20:00 respectively 

S4: the first bus departs at 09:00, so the later ones depart 

at 12:00, 15:00, 18:00, and 21:00 respectively 

    We now demonstrate how to calculate the number of 

passengers boarding each bus. 

    Assume that Company A follows S1, that is, its buses 

leave at 06:00, 09:00, 12:00, 15:00, and 18:00. Let 

Company B’s buses leave at 07:00, 10:00, 13:00, 16:00, 

and 19:00; thus, they follow S2. 

    The following table shows the most convenient buses 

for the passengers at each hour, keeping in mind that no 

one will be waiting for a very long time. The last row of 

the table shows the total number of passengers on each bus 

leaving the station at the corresponding times. 
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    Table 1: Passengers on each bus of a day if Company 

A follows the S1 schedule and Company B follows the 

S2 schedule 

Time Bus Preference 
No. of 

Passengers 

6:00 A 20 

7:00 B 20 

8:00 A - 

9:00 A 40 

10:00 B 20 

11:00 A - 

12:00 A 40 

13:00 B 20 

14:00 A - 

15:00 A 40 

16:00 B 20 

17:00 A - 

18:00 A 40 

19:00 B 20 

20:00 - - 

21:00 - - 

 

Evidently, Company A will transport a total of 180 

passengers daily whereas Company B will only be able to 

transport 100 passengers. 

Now, if we analyze all the possible pairs of schedules 

for Company A and Company B, then we get the following 

normal form. 

 

 Table 2: Payoff Bimatrix 

A 

B 
S1 S2 S3 S4 

S1 
130, 

130 

180, 

100 
100,180 

140, 

180 

S2 
100, 

180 

140, 

140 

200, 

100 

120, 

200 

S3 
180, 

100 

100, 

200 

150, 

150 

220, 

100 

S4 
180, 

140 

200, 

120 

100, 

220 

160, 

160 

 

 

Figure 1: Graphical Representation of Bi-matrix Payoff 

of two companies. 

Solution by Game Theory 

The oddment method, also known as the method of 

oddments, is a technique used in game theory to identify 

optimal strategies in a two-person zero-sum game with no 

saddle point. By transforming payoff matrices and 

calculating oddments, players can identify optimal 

strategies that ensure balanced outcomes. Despite its 

limitations in scalability and sensitivity, it remains a 

fundamental method for understanding strategic 

interactions in competitive environments. 

 

Oddment Method for 𝒏 × 𝒏 Games 

Consider M = ( a i j ) as an n × n payoff matrix. 

 For n = 3, 

M = [

𝑎11 𝑎12 𝑎13

𝑎21 𝑎22 𝑎23

𝑎31 𝑎32 𝑎33

] 

 Step 1:  

    Generate one new matrix C such that its first 

column is formed by subtracting the second 

column from the first column of the matrix M. 

The second column of new matrix C is then 

obtained by subtracting the third column from the 

second, and this process continues until the last 

column of M is processed. Consequently, C 

becomes an n × (n − 1) matrix. 

C = [

     a11 − a12 a12 − a13   
     a21 − a22 a22 − a23  
     a31 − a32 a32 − a33  

] 

 Step 2: 

    From matrix M, construct another new matrix 

R by subtracting each subsequent row from the 

previous row, analogous to the column 

subtraction process performed in Step 1. This 

results in R being an (n − 1) × n matrix. 

 

R = [    
a11 − a21 a12 − a22 a13 − a23

a21 − a31 a22 − a32 a23 − a33
   ] 

 Step 3: 

    Calculate the oddments for each row and 

column of the matrix M. The oddment for the 𝑖 −
𝑡ℎ row is the determinant of  𝐶𝑖, where Ci is the 

matrix C with the 𝑖 − 𝑡ℎ row removed. In the 

same way, the oddment for the 𝑗 − 𝑡ℎ column is 

the determinant of  𝑅𝑗  , where 𝑅𝐽 is the matrix R 

with the 𝑗 − 𝑡ℎ column removed. 

 

C1 = [    
a21 − a22 a22 − a23

a31 − a32 a32 − a33
    ] 

R2 = [    
a11 − a21 a13 − a23

a21 − a31 a23 − a33
    ] 

 Step 4: 

    Write the absolute values of these oddments 

next to their corresponding rows and columns. 

 Step 5: 

    Verify if  

∑ Row Oddments =  ∑ Column Oddments. 
    If the sum of the row oddments is equal to the 

sum of the column oddments, the oddments can 

be expressed as fractions of the total, revealing 

the optimal strategies. 

    Otherwise, the method is considered 

unsuccessful. 

 Step 6: 

    Determine the game's expected value using the 

optimal mixed strategy for the row player, 

0 200,000 400,000 600,000 800,000

S1

S2

S3

S4

S1 S2 S3 S4
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applicable against any strategy of the column 

player. 

To use the Oddment method, we first transform the 

payoff bimatrix (Table 2) into a zero-sum form. To do this, 

we take the differences of the two values in each cell, 

considering Company A as the primary. 

 

 Table 3: Zero-Sum Game Representation for both 

companies 

Company A 

Company B S1 S2 S3 S4 

S1 0 80 -80 -40 

S2 -80 0 100 -80 

S3 80 -100 0 120 

S4 40 80 -120 0 

     Probabilities of the pure strategies in the mixed 

strategy, Mix-1 are as follows 

𝑃(𝑆1) = 
240000

544000
 ≈ 44% 

𝑃(𝑆2) = 
64000

544000
 ≈ 12% 

𝑃(𝑆3) = 
32000

544000
 ≈ 6% 

𝑃(𝑆4) = 
208000

544000
 ≈ 38% 

    We now calculate the expected payoff of Company A 

for Mix-1. 

    For Company A, 

If S1 is chosen then the expected payoff is, 

(0.44 × 130) + (0.12 × 180)  + (0.06 × 100)  
+  (0.38 × 140)  =  138 

If S2 is chosen then the expected payoff is, 

(0.44 × 100) + (0.12 × 140)  + (0.06 × 200) + (0.38
× 120)  =  118.4 

If S3 is chosen then the expected payoff is, 

(0.44 × 180) + (0.12 × 100)  + (0.06 × 150)  
+  (0.38 × 220)  =  183.8 

If S4 is chosen then the expected payoff is, 

(0.44 × 180) + (0.12 × 200)  + (0.06 × 100)  
+  (0.38 × 160)  =  170 

Interpretation of the results are 

● The expected payoff is 138 for choosing strategy 

S1. This means that if Company A chooses 

strategy S1, it can expect to transport an average 

of 138 passengers daily 

● Choosing strategy S2, the company can expect to 

receive 118 passengers daily 

● Choosing strategy S3, the expected daily payoff 

is 183.8 which means the bus can carry an 

average of 183 passengers daily 

● Choosing strategy S4, it can transport an average 

of 170 number of passengers daily 

    For Company B we will get the same results as 

Company A. 

    Based on the mixed strategy Mix-1, Companies A & B 

can maximize their payoffs by choosing strategy S3, which 

yields an expected payoff of 183.8. 

Solution by Linear Programming 

The Simplex Algorithm 

The simplex algorithm is a method in linear programming 

that finds the optimal solution to a system of linear 

equations with constraints, by focusing on a selected few 

solutions instead of checking all possible ones. It starts 

with an initial feasible solution and moves to adjacent 

feasible solutions step-by-step, improving the objective 

function at each stage. In each iteration, the algorithm 

selects a variable to enter the solution (pivot) and adjusts 

the solution to ensure both feasibility and improvement in 

the objective function. This process repeats until no further 

improvements can be made, meaning the optimal solution 

has been reached. Notably, all solutions are located at the 

corner points of the feasible region. 

    Here's a mathematical explanation of the simplex 

algorithm: 

(i)  Objective Function and Constraints: 

In a linear programming problem, the goal is to maximize 

(or minimize) an objective function, subject to certain 

constraints. The objective function can be written as: 

max Z = c1x1 + c2x2+. . . +cnxn 

where (c1, c2, . . . , cn) are the coefficients of the variables 

x1, x2, . . . , xn respectively in the objective function, and 𝑍 

is the value of the objective function.  

    The constraints are represented as linear equations or 

inequalities: 

a11x1 + a12x2+. . . +a1nxn ≤ b1 

a21x1 + a22x2+. . . +a2nxn ≤ b2 

                                                                      … 

am1x1 + am2x2+. . . +amnxn ≤ bm 
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Where, 

aij (i = 1, m̅̅ ̅̅ ̅  j = 1, n̅̅ ̅̅̅) are coefficients of the variables in 

the constraints,  

bi (i = 1, m̅̅ ̅̅ ̅) are constants on the right-hand side, and 

m is the number of constraints. 

(ii)  Initialization: 

The algorithm begins with an initial feasible solution, 

usually obtained by setting some variables to zero and 

solving for the other variables. 

(iii) Entering and Leaving Variables: 

At each iteration, one variable enters the solution (entering 

variable), and another exits (leaving variable). These 

variables are chosen based on the objective function and 

the constraints. 

(iv) Pivoting: 

After selecting the entering and leaving variables, the 

solution is adjusted by pivoting to move to an adjacent 

feasible solution, improving the objective function while 

maintaining feasibility. 

(v) Termination: 

The method keeps iterating through the addition and 

subtraction of variables, turning at each turn, until the 

objective function can no longer be improved. The 

algorithm ends here since the current result is the best one. 

(vi) Optimality and Feasibility: 

The algorithm makes sure that the solution stays feasible 

(that is, it meets all the constraints) and optimal (that is, it 

either maximizes or minimizes the objective function). 

    To sum up, the simplex algorithm improves the 

objective function by methodically examining the corners 

of the viable region until an ideal solution is discovered. 

Dual Problem 

In the context of linear programming, the dual problem is 

associated with a given primal problem which involves the 

problem of maximizing or minimizing an objective 

function with a different set of linear constraints. Here is a 

mathematical summary of the dual problem. 

    The primal linear programming problem is presented in 

its standard form as: 

Max 𝐙 = 𝐜T𝐱 

    Subject to:  

A𝐱 ≤ 𝐛 

𝐱 ≥ 0 

Where, 

 𝑍 is the objective function to be 

maximized. 

 𝒄 is the coefficient vector in the 

objective function. 

 𝒙  represents the vector of 

decision variables. 

 𝐴 is the matrix of coefficients 

for the constraints. 

 𝒃  is the vector of constants in 

the constraints. 

 𝒙 ≥ 0  indicates that the 

decision variables are non-

negative.  

    The dual problem is associated with the primal problem 

which involves minimizing a new objective function with 

a different set of constraints. It is formulated as follows: 

Min 𝐖 = 𝐛T𝐲 

Subject to: 

AT𝐲 ≥ 𝐜 

𝐲 ≥ 0 

Where: 

 𝑊  represents the objective 

function of the dual problem. 

 𝒚  indicates the vector of dual 

variables. 

 𝐴𝑇  represents the transpose of 

matrix 𝐴 

 𝒃 and 𝒄 are vectors. 

 𝒚 ≥ 0 indicates that the dual 

variables are non-negative.  

   Formulating the mixed strategy Mix-2 we get, 

    Let V be the value of the game, whose value will be 

bounded between the maximin (-80) and minimax (80), 

that is, 

Maximin value ≤ Game value ≤ Minimax value. 

    Since pi and qi are probabilities, they are all non-

negative. Also from the laws of probability, we have 

∑ pi
4
i=1 = 1 and ∑ qi

4
i=1 = 1. 

     Now, when Company B plays strategy S1, A will have 

the game value of −80p2 + 80p3 + 40p4 which must be 

at most equal to the game value 𝑉. Therefore, −80p2 +
80p3 + 40p4 ≥ V ⇒ V + 80p2 − 80p3 − 40p4 ≤ 0, 

which acts as a constraint.Similarly, when Company B 

plays strategies S2, S3, and S4, we get the other three 

constraints for Company A. 
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    The linear programming problem (LPP) equivalent to 

our problem is then, 

Maximize Z = V 
𝑆𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜, 

p1 + p2 + p3 + p4 = 1 

V − 0p1 + 80p2 − 80p3 − 40p4 ≤ 0 

V − 80p1 − 0p2 + 100p3 − 80p4 ≤ 0 

V + 80p1 − 100p2 − 0p3 + 120p4 ≤ 0 

V + 40p1 + 80p2 − 120p3 − 0p4 ≤ 0 

pi ≥ 0 (i = 1,2,3,4) and V unrestricted in sign 

    We solved this linear program in AMPL and got the 

following results. 

V = 0 
p1

= 0 

p2

= 0.4 

p3

= 0.266667 

p4

= 0.33333 

    Now, the equivalent LPP for Company B is the dual of 

the LPP for Company A. 

 

Minimize W = V 

𝑆𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜, 

q1 + q2 + q3 + q4 = 1 

V + 0q1 − 80q2 + 80q3 + 40q4 ≥ 0 

V + 80q1 + 0q2 − 100q3 + 80q4 ≥ 0 

V − 80q1 + 100q2 + 0q3 − 120q4 ≥ 0 

V − 40q1 − 80q2 + 120q3 + 0q4 ≥ 0 

qi ≥ 0 (i = 1,2,3,4) and V unrestricted in sign 

Which would give the same objective functional value. 

    Therefore, the mixed strategy Mix-2 thus found is, 

0% 𝑜𝑓 𝑆1 

40% 𝑜𝑓 𝑆2 

26.67% 𝑜𝑓 𝑆3 

33.33% 𝑜𝑓 𝑆4 

For Company A:  

If S1 is chosen then the expected payoff is, 

(0 × 130) + (0.40 × 180) + (0.2667 × 100)

+ (0.3333 × 140) = 145.332 ≈ 145 

If S2 is chosen then the expected payoff is, 

(0 × 100) + (0.40 × 140) + (0.2667 × 200)

+ (0.3333 × 120) = 149.336 ≈ 149 

If S3 is chosen then the expected payoff is, 

(0 × 180) + (0.40 × 100) + (0.2667 × 150)

+ (0.3333 × 220) = 153.331 ≈ 153 

If S4 is chosen then the expected payoff is, 

(0 × 180) + (0.40 × 200) + (0.2667 × 100)

+ (0.3333 × 160) = 159.998 ≈ 160 

For Company B we will get the same result. 

Based on the mixed strategy Mix-1, Company A can 

maximize its expected payoff by choosing strategy S4, 

which yields an expected payoff of 159.998. Company B 

can maximize its expected payoff by choosing strategy S4, 

which yields an expected payoff of 160.002 under Mix-2. 

Results and Comparative Analysis  

Now we consider all the strategies at once and find out the 

best strategies for companies A and B: 

Table 4: Payoff Matrix with All the Pure and Mixed    

Strategies 

 A      
   

B S1 S2 S3 S4 
Mix-

1 

Mix-

2 

S1 
130, 

130 

180, 

100 

100, 

180 

140, 

180 

138, 

148.4 

145.3

, 148 

S2 
100, 

180 
140, 

140 

200, 

100 

120, 

200 

118.4

, 178 

149.3

, 

149.3 

S3 
180, 

100 

100, 

200 
150, 

150 

220, 

100 

183.8

, 115 

153.3

, 

153.3 

S4 
180, 

140 

200, 

120 

100, 

220 
160, 

160 

170, 

150 

160, 

160 

Mix-

1 

148.4

, 138 

178, 

118.4 

115, 

183.8 

150, 

170 

150.5

6, 

150.5

6 

150.5

6, 

153.9

3 

Mix-

2 

148, 

145.3 

149.3

, 

149.3 

153.3

, 

153.3 

160, 

160 

153.9

6, 

150.5

6 

153.9

3, 

153.9

3 

 

 Observations:  

 Among the mixed strategies, we get equilibriums 

when both companies choose the same mixed 

strategy. The Nash equilibrium is Mix-2 vs Mix-2 

gives the highest payoffs for both companies  

 The individual best payoffs for the companies among 

all the strategies (excluding Mix-1) are obtained when 
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the companies choose S3 (payoff of 220), given the 

other company chooses S4. 

 However, the payoff will change according to the 

choice of the opponent. For example, if one chooses 

S3 but the other company chooses any other strategy 

than S4, then the first company may have the least 

payoff of 100. 

Taking a decision without knowing the other 

company's decision does not guarantee the best payoff for 

either. Hence, non-cooperative games are always a 

gamble. To ensure a better payoff for both companies, their 

best bet is to cooperate and communicate.  

To ensure better payoff for both companies, their best 

bet is to cooperate and communicate. 

While Linear Programming ultimately gave the 

strategy that is most beneficial for both companies, the 

mixed strategy calculated explicitly with concepts from 

Game Theory wasn’t far behind. At equilibria, the 

difference of expected numbers of passengers is just of 

153.96–150.56 = 3.4 ≈ 3. We’ve used the concepts of 

Game Theory to formulate our linear programming 

problem in a way that considers each scenario for both 

companies. 

Linear programming typically optimizes resource 

allocations, it lacks the ability to account for the 

competitive dynamics of real-world problems. For a larger 

problem it’d be easier to implement the oddment method 

than the simplex method. Both fields have immense 

success in solving real-life decision making problems. 

Rather than arguing one’s superiority over the other, we 

are excited to experience the developments of both. 

This problem has also showed us that cooperation 

among individuals and even different fields of study might 

just be the best strategy of them all!  

In the transportation problem we studied, two cases may 

arise. 

Case 1: Maximizing Profit with Risk 

In this scenario, both companies aim to maximize their 

profits. The payoff matrix indicates that the highest 

number of passengers each company can attract in a day is 

220 by selecting the S3 schedule. However, this choice 

carries significant risk. For example, if Company A opts 

for S3, hoping to secure 220 passengers, but Company B 

chooses S2 instead, Company A could end up with only 

100 passengers—120 less than expected. The same risk 

applies to Company B.Thus, while choosing the S3 

schedule offers the potential for maximum profit, it also 

poses the risk of substantial losses. 

Case 2: Minimizing Risk for Steady Payoff 

In this case, both companies prefer to avoid risk and aim 

for a stable payoff over the long term. To achieve this, both 

companies would likely adopt the mixed strategy Mix-3, 

which ensures the highest possible payoff for both parties. 

If this were a cooperative game-allowing the bus 

companies to communicate before making decisions-they 

would likely reach an agreement that maximizes their 

payoffs. In this scenario, both companies would probably 

settle on the (S4, S4) strategy, which guarantees them the 

highest equal payoff. As we can see in the figures, the 

payoffs might reach a higher value, but they fluctuate a lot 

in the four pure strategies. Although Mix-1 is more stable 

than the pure strategies, Mix-2 gives the most evenly 

distributed payoffs. Hence, Mix-2 seems to be the safest 

bet and the Mix-2 vs Mix-2 equilibrium can be considered 

as the Nash equilibrium. 

Both company aims to get the maximum number of 

passengers with the least inherent risk. In this regard, the 

equilibria are the safest choice because in an equilibrium, 

every player's strategy is the best one given the other 

players' strategies. Figure 1 solidifies this notion because 

it illustrates that the payoffs are the closest at the equilibria. 

Table 4 shows that the equilibria are at the diagonal of the 

payoff bi-matrix. 

At first glance, the S4 vs S4 equilibrium seems to give 

the highest payoff. But is it the best strategy? Suppose 

Company A chooses S4 in hopes of securing the higher 

payoff. The problem is that they don’t know which 

strategy Company B would be playing. They could get 

either 200 or 100 passengers based on whether the other 

company plays S2 or S3. A similar problem exists from 

Company B’s perspective. Thus, the equilibria of the pure 

strategies are not in fact the best strategies. 

Both mixed strategies have an equilibrium, and the 

payoffs don’t vary as much as the pure ones. Between the 

two, Mix-2 has a lower risk of losing passengers, no matter 

what the other company chooses to do. 

 

Conclusion 
This study introduces a game-theoretic approach to 

analyzing the decision-making strategies of two competing 

bus companies, emphasizing both risk and profit trade-offs 

in non-cooperative scenarios. Unlike traditional 

transportation studies that often focus on operational 

efficiency or market competition, this research highlights 

the strategic interplay between payoff maximization and 

risk minimization. 

The analysis reveals distinct decision-making 

strategies for the competing bus companies, highlighting 

the interplay between maximizing profits and minimizing 

risks. The highest payoffs for both companies are achieved 

when they adopt the same mixed strategy, specifically 

Mix-2 versus Mix-2. This represents a Nash equilibrium, 

ensuring mutual benefit within the competitive 

framework. 

While the S3 schedule offers the potential for the 

maximum individual payoff of 220 passengers, this 

strategy carries significant risk. If the opposing company 

selects a different schedule, such as S2, the payoff can drop 

dramatically, demonstrating the trade-off between high 

reward and high risk. 

For companies prioritizing stability over potential 

profit spikes, adopting the Mix-3 strategy provides the 

most consistent outcomes. This approach mitigates the risk 

of significant losses and ensures a reliable payoff for both 

parties over time. 

If the game allowed for collaboration between the 

companies, they would likely converge on a mutually 

beneficial strategy, such as (S4, S4). This cooperative 

approach would guarantee equal and optimal payoffs for 

both companies. 
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Overall, the choice of strategy is contingent on each 

company's priorities-whether they seek to maximize 

profits at the expense of potential risk or prefer a steady 

and predictable outcome. The analysis underscores the 

complexity of decision-making in competitive 

environments and the value of game theory in identifying 

optimal strategies. 

The dual focus on mixed strategies and scenario-based 

outcomes using game theory offers fresh perspectives on 

competitive strategy formulation in the transportation 

sector, paving the way for further applications of game 

theory in similar multi-agent decision environments. There 

are many limitations in our work like limited data 

collection and choice of methods. In future we will work 

to eliminate these kinds of limitations.  
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Nomenclature: 

GT game theory 

LPP linear programming problem 

AMPL a mathematical programming language 

A,B two bus companies for competitive scenario 

V value of the game 

R row matrix 

C column matrix 

OM oddment method 

MS mixed strategies 

DP dual problem 

PP primal problem 

Vmin maximin value 

Vmax minimax value 

OS optimal solution 

FS feasible solution 

NE Nash equilibrium 

S1,S2,S3,S4 strategies 

z objective function 

P payoff matrix 

p=(p1,p2,p3,p4) Mixed strategy for company A 

q=(q1,q2,q3,q4) Mixed strategy for company B 

E(A) Expected payoff for company A 

E(B) Expected payoff for company B 

 


