EXPOSURE UNDER CHOLINE CHLORIDE EXHIBITS SUCCESSFUL GONADAL MATURATION OF INDIAN MAJOR CARPS AND AIR-BREATHING TELEOSTS IN A SEMI-INTENSIVE PISCICULTURE SYSTEM: A HISTOTECHNOLOGICAL INTROSPECTION
DOI:
https://doi.org/10.53808/KUS.SI.2023.ICES.A53-lsKeywords:
Indian major carps, air-breathing teleosts, semi-intensive culture, choline chloride, ovary, testisAbstract
Surveillance under direct field-pond application of choline chloride in addition to farm-made-aqua-feed under semi-intensive culture system was investigated on the gonadal maturity in two Indian Major Carps Catla catla (Catla) and Labeo rohita (Rahu) and in two air-breathing teleosts, e.g., Clarias batrachus (Magur) and Anabas testudineus (Koi) reared in a ratio of 2:5:1:1:: Catla:Rahu:Magur:Koi for a period of 90-d both during dry [November to January as control-dry (CD) and treatment-dry (TD)] and in breeding seasons [June to August as control-breeding (CB) and treatment-breeding (TB)]. Results were compared with control [C: pond (C) fed only with farm-made-aqua-feed] and treatment [T: ponds (P1 and P2) fed with farm-made-aqua-feed plus feed-grade choline chloride]. The histological observations of ovary under control condition in both the seasons (CD and CB) depicted the follicular layer separation, follicular atresia, resulting into non-fertile oocytes, and ovarian tissue necrosis, declination of yolk granules, while under choline supplementation in both the seasons (TD and TB), the fish species showed ripe and developed oocytes resulting into excellent reproduction performance and steroidogenesis as well as ovulation especially in breeding season. Besides, the exposure of choline (TB) has improved manifolds in the seminiferous tubules of testis of the experimental fish species with the development of increased sertoli cells, development of mature spermatozoa within the epidermis resulting into successful maturation of the sperm and occurrence of better sperm quality having increased motility especially in the breeding season. Finally, choline can trigger the successful ovarian maturation depicting better yield, causing substantial profit to fish farmers.
Downloads
References
Abdelhamid, A., Mehrim, I., El-Barbary, I. & El-Sharawy, A. (2013). Effect of some commercial feed additives on the structure of gonads and microbiology of Nile tilapia (Oreochromis niloticus) fish. Egyptian Journal of Aquatic Biology and Fisheries, 17 (2), 47- 62. doi: 10.21608/ejabf.2013.2167.
Calderano, A. A., Nunes, R.V., Rodrigueiro, R. J. B. & Cesar, R. A. (2015). Replacement of choline chloride by a vegetal source of choline in diets for broilers. Ciencia Animal Brasileira, 16, 37-44. doi: 10.1590/1089-6891v16i127404.
Cek, S. &Yilmaz, E. (2008). The effect of varying dietary energy on gonad development at first sexual maturity of the Sharptooth catfish (Clarias gariepinus Burchell, 1822). Aquaculture International, 17(6), 553–563. doi:10.1007/s10499-008-9224-4.
Chatzifotis, S., Takeuchi, T. & Seikai, T. (1995). The effect of dietary L-carnitine on growth performance and lipid composition in red sea bream fingerlings. Fisheries science, 61(6), 1004-1008. doi: 10.2331/fishsci.61.1004.
Dabrowski, K., Lee, K.J., Rinchard, J., Ciereszko, A., Blom, J. H. & Ottobre, J. S. (2001). Gossypol isomers bind specifically to blood plasma proteins and spermatozoa of rainbow trout fed diets containing cottonseed meal. Biochimica et Biophysica Acta (BBA) - General Subjects, 1525(1-2), 37–42. doi:10.1016/s0304-4165(00)00168-9.
Das, S., Patra, A., Mandal, A., Mondal, N. S., Dey, S., Mirjan, S.K. & Ghosh, A. R. (2020). Alterations in biochemical parameters of fish species under choline administration directly into the pond water in a semi-intensive fish farming system: A comparative study. Int. Journal of Fisheries and Aquatic Studies, 8(6), 08-15. doi:10.22271/fish.2020.v8.i6a.2352.
Das, S., Dey, S., Patra, A., Mandal, A., Mondal, N. S., Chowdhury, D., Ghosh, K. & Ghosh, A. R. (2021). Direct choline administration in semi-intensive pisciculture system: A positive contaminant. Emerging Contaminants, 7, 22–34. doi:10.1016/j.emcon.2020.12.002.
Das, S., Patra, A., Mandal, A., Mondal, N.S., Dey, S., Mondal, A. K., Dey, A.K. & Ghosh, A. R. (2022). Choline Chloride Induces Growth Performance of Indian Major Carps and Air-Breathing Fish Species with an Outcome of Quality Food-Fish under a Semi-Intensive Culture System: A Biochemical Investigation. ACS omega, 7(17), 14579-14590. doi: 10.1021/acsomega.1c06533.
El-Damrawy, S. (2007). L-carnitine supplementation for age-induced reproductive criteria in male pigons. Journal of Animal and Poultry Production, 32(11), 8915-8929. doi:10.21608/JAPPMU.2007.220967.
El-Sebai, A., Abaza, M. & Elnagar, S. A. (2003). Physiological effects of gibberellic acid (GA3) on female Japanese quail production and reproduction. Egyptian Poultry Science, 23 (IV), 977-992.
Ghazalah, A. A. (1998). The choline requirements of broiler chicks fed fat-supplemented diets. Egypt. Poult. Sci., 18, 271-289.
Ghosh, A. R. (1991). Arsenic and cadmium toxicity in the alimentary canal and digestion of two Indian air-breathing teleosts Notopterus notopterus (Pallas) and Heteropneustes fossilis (Bloch). Ph.D. Thesis, The University of Burdwan, West Bengal, India.
Guraya, S.S. (1986). The cell and molecular biology of fish oogenesis. Monographs in Developmental Biology, Karger.
Halver, J.E. (2002). The vitamins. In: Halver, J.E. & Hardy, R.W. Editors. Fish nutrition. 3rd edn, San Diego, CA, USA, Academic Press, 61-140.
Haraldsson, H., Sveinsson, T. & Skulason, S. (1993). Effects of LHRHa treatments upon the timing of ovulation and upon egg and offspring quality in Arctic charr, Salvelinus alpinus (L.). Aquaculture Research, 24(2), 145-150. doi:10.1111/j.1365-2109.1993.tb00534.x.
Ketola, H. G. (1976.) Choline Metabolism and Nutritional Requirement of Lake Trout (Salvelinus namaycush). Journal of Animal Science, 43 (2), 474 - 477. doi:10.2527/ jas1976.432474x.
Lye, C. M., Frid, C. L. J. & Gill, M. E. (1998). Seasonal reproductive health of flounder Platichthys flesus exposed to sewage effluent. Marine Ecology Progress Series, 170, 249-260.
Mai, K., Xiao, L., Ai, Q., Wang, X., Xu, W., Zhang, W., Liufu, Z. & Ren, M. (2009). Dietary choline requirement for juvenile cobia, Rachycentron canadum. Aquaculture, 289 (1-2), 124–128. doi:10.1016/j.aquaculture.2009.01.016.
Msiska, O. V. (2002). The histology of mature gonads of Oreochromis (Nyasalapia) karongae (Trewavas). African Journal of Ecology, 40(2), 164–171. doi:10.1046/j.1365-2028.2002.00363.x.
NRC (1994). Nutrient requirement of poultry. 9th rev. ed. Washington, DC, USA, National Academy Press.
Rinchard, J., Mbahinzireki, G., Dabrowski, K., Lee, K.J., Garcia-Abiado, M.A. & Ottobre, J. (2002). Effects of dietary cottonseed meal protein level on growth, gonad development and plasma sex steroid hormones of tropical fish tilapia Oreochromis sp. Aquaculture International, 10(1), 11–28. doi:10.1023/a:1021379328778.
Salaro, A.L., Pezzato, L.E., Barros, M.M. & Vicentini, C.A. (1999). Performance and spermatogenesis of nile tilapia fingerlings fed with cottonseed meal or cottonseed flour. Pesquisa Agropecuaria Brasileira, 34(3), 449-457. doi:10.1590/S0100-204X1999000300017.
Sheard, N. F. & Zeisel, S. H. (1989). Choline: an essential dietary nutrient? Nutrition, 5 (1), 1−5.
Tope-Jegede, O.H., Fagbenro, O.A. & Olufayo, M.O. (2019). Histology of gonads in Oreochromis niloticus (Linnaeus 1757) fed cotton seed meal-based diets. International Journal of Fisheries & Aquatic Studies, 7(2), 269-274.
Twibell, R.G. & Brown, P.B. (2000). Dietary Choline Requirement of Juvenile Yellow Perch (Perca flavescens). The Journal of Nutrition, 130(1), 95–99. doi:10.1093/jn/130.1.95.
Van-Der-Kraak, G., Dye, H. M. & Donaldson, E. M. (1984). Effects of LH-RH and des-gly10[D-Ala6]LH-RH-ethylamide on plasma sex steroid profiles in adult female coho salmon (Oncorhynchus kisutch). General and Comparative Endocrinology, 55(1), 36–45. doi:10.1016/0016-6480(84)90126-6.
Wang, X.F., Li, X.Q., Leng, X.J., Shan, L.L., Zhao, J.X. & Wang, Y.T. (2014). Effects of dietary cottonseed meal level on the growth, haematological indices, liver and gonad histology of juvenile common carp (Cyprinus carpio). Aquaculture, 428-429, 79–87. doi:10.1016/j.aquaculture.2014.02.040.
Wauben, I. P. M. & Wainwright, P. E. (1999). The Influence of Neonatal Nutrition on Behavioral Development: A Critical Appraisal. Nutrition Reviews, 57(2), 35–44. doi:10.1111/j.1753-4887.1999.tb01776.x.
Workel, H.A., Keller, T.H., Reeve, A. & Lauwaerts, A. (2002). Choline-the rediscovered vitamin for poultry [Internet]. The poultry site. Available from: http://www.poultrysite.
Wu, P., Feng, L., Kuang, S.Y., Liu, Y., Jiang, J., Hu, K., Jiang, W.D., Li, S.H., Tang, L. & Zhou, X.Q. (2011). Effect of dietary choline on growth, intestinal enzyme activities and relative expressions of target of rapamycin and eIF4E-binding protein2 gene in muscle, hepatopancreas and intestine of juvenile Jian carp (Cyprinus carpio var. Jian). Aquaculture, 317(1-4), 107–116. doi:10.1016/j.aquaculture.2011.03.042.
Zeisel, S.H., Da-Costa, K.A., Youssef, M. & Hensey, S. (1989). Conversion of Dietary Choline to Trimethylamine and Dimethylamine in Rats: Dose-Response Relationship. The Journal of Nutrition, 119(5), 800–804. doi:10.1093/jn/119.5.800.
Zeyner, A. & Harmeyer, J. (1999). Metabolic functions of L‐Carnitine and its effects as feed additive in horses. A review. Archives of Animal Nutrition, 52(2), 115–138. doi:10.1080/17450399909386157.
Zhang, C.X., Pan, M.X., Li, B., Wang, L., Mo, X.F., Chen, Y.M., Lin, F.Y. & Ho, S.C. (2012). Choline and betaine intake is inversely associated with breast cancer risk: A two-stage case-control study in China. Cancer Science, 104(2), 250–258. doi:10.1111/cas.12064.
Zhang, Z. & Wilson, R. P. (1999). Re-evaluation of the choline requirement of fingerling channel catfish (Ictalurus punctatus) and determination of the availability of choline in common feed ingredients. Aquaculture, 180 (1-2), 89–98. doi:10.1016/s0044-8486(99)00190-8.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Khulna University Studies

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.