• Masagus Muhammad Prima Putra Fisheries Product Technology, Department of Fisheries, Faculty of Agriculture, Universitas Gadjah Mada, Yogyakarta-55281, Indonesia
  • Muhammad Yaafi Faculty of Agriculture, Universitas Gadjah Mada, Yogyakarta-55281, Indonesia
  • Achmad Hanif Mardinsyah Fisheries Product Technology, Department of Fisheries, Faculty of Agriculture, Universitas Gadjah Mada, Yogyakarta-55281, Indonesia
  • Indun Dewi Puspita Center for Seafood Security and Sustainability, Department of Fisheries, Faculty of Agriculture, Universitas Gadjah Mada, Yogyakarta-55281, Indonesia




Antibacterial activity, Bacteriocin, contaminant bacteria, Pakasam, wadi


Fish fermented products are popular products among coastal community in Indonesia. Generally, the products are naturally produced with the addition of salt without any selection of the bacterial community. This situation resulted on the variety of the final products quality. One strategy to overcome this problem is by adding a potential lactic acid (LAB), a good bacterium, in the fermentation process. We have conducted a screening of LAB from several local Indonesian fermented fish products namely Pakasam and Wadi. The first screening collected 28 isolates which characterized as LAB from Gram stain and catalase activity. The second screening was done to screen a LAB which possess antibacterial activity against common contaminant bacteria namely Staphylococcus aureus ATCC 6538, Salmonella sp. 230C, Escherichia coli 563 B, Citrobacter freundii CK1, Klebsiella sp. CK2, and Morganella morganii TK7. Among those 28 isolates, we selected one isolate with the highest antibacterial activity and successfully identified molecularly as Weisella sp. GMP 12. Further isolation of antibacterial substances targeted bacteriocin showed a good inhibition to Staphylococcus aureus ATCC 6538 with 3694 AU (Activity Unit), Salmonella sp. 230C with 2254 AU, Citrobacter freundii CK1 with 3166 AU but not to E. coli 563 B. This finding concluded that Weisella sp. GMP 12 isolated from Pakasam could be a potential candidate as a starter in the production of fermented fish products to enhance its quality.


Download data is not yet available.


Abrams, D., Barbosa, J., Albano, H., Silva, J., Gibbs, P. A., & Teixeira, P. (2011). Characterization of bacPPK34 a bacteriocin produced by Pediococcus pentosaceus strain K34 isolated from “Alheira .” Food Control, 22(6), 940–946. https://doi.org/10.1016/j.foodcont.2010.11.029 DOI: https://doi.org/10.1016/j.foodcont.2010.11.029

Ahmad, V., Khan, M. S., Jamal, Q. M. S., Alzohairy, M. A., Al Karaawi, M. A., & Siddiqui, M. U. (2017). Antimicrobial potential of bacteriocins: in therapy, agriculture and food preservation. International Journal of Antimicrobial Agents, 49(1), 1–11. https://doi.org/10.1016/j.ijantimicag.2016.08.016 DOI: https://doi.org/10.1016/j.ijantimicag.2016.08.016

Al Hammam, M.Y., M.M.P. Putra, A.H. Mardinsyah, G. Cahyati, I.D. Puspita. (2023). Antibacterial activities of Lactobacillus sp. GMP1 and Weisella sp. GMP12 against some foodborne disease causing-bacteria. Jurnal Pengolahan Hasil Perikanan Indonesia, 26(2), 206-215. http://dx.doi.org/10.17844/jphpi.v26i2.44618 DOI: https://doi.org/10.17844/jphpi.v26i2.44618

Anal, A. K., Perpetuini, G., Petchkongkaew, A., Tan, R., Avallone, S., Tofalo, R., Nguyen, H. Van, Chu-Ky, S., Ho, P. H., Phan, T. T., & Waché, Y. (2020). Food safety risks in traditional fermented food from South-East Asia. Food Control, 109, 106922. https://doi.org/10.1016/j.foodcont.2019.106922 DOI: https://doi.org/10.1016/j.foodcont.2019.106922

Arfani, N., Nur, F., Hafsan, & Azrianingsih, R. (2017). Bacteriocin production of Lactobacillus sp. from intestines of ducks (Anas domesticus L.) incubated at room temperature and antibacterial effectivity against pathogen. AIP Conference Proceedings, 1844(1), 30004. https://doi.org/10.1063/1.4983431 DOI: https://doi.org/10.1063/1.4983431

Aslam, M., Shahid, M., Rehman, F. U., Naveed, N. H., Batool, A. I., Sharif, S., & Asia, A. (2011). Purification and characterization of bacteriocin isolated from Streptococcus thermophilus. African Journal of Microbiology Research, 5(18), 2642–2648. https://doi.org/10.5897/AJMR11.225 DOI: https://doi.org/10.5897/AJMR11.225

Ghanbari, M., Jami, M., Domig, K. J., & Kneifel, W. (2013). Seafood biopreservation by lactic acid bacteria - A review. LWT - Food Science and Technology, 54(2), 315–324. https://doi.org/10.1016/j.lwt.2013.05.039 DOI: https://doi.org/10.1016/j.lwt.2013.05.039

Goh, H. F., & Philip, K. (2015). Purification and characterization of bacteriocin produced by weissella confusa A3 of dairy origin. PLoS ONE, 10(10), 1–17. https://doi.org/10.1371/journal.pone.0140434 DOI: https://doi.org/10.1371/journal.pone.0140434

Huang, Y., Luo, Y., Zhai, Z., Zhang, H., Yang, C., Tian, H., Li, Z., Feng, J., Liu, H., & Hao, Y. (2009). Characterization and application of an anti-Listeria bacteriocin produced by Pediococcus pentosaceus 05-10 isolated from Sichuan Pickle, a traditionally fermented vegetable product from China. Food Control, 20(11), 1030–1035. https://doi.org/10.1016/j.foodcont.2008.12.008 DOI: https://doi.org/10.1016/j.foodcont.2008.12.008

Hwanhlem, N., S. Buradaleng, S. Wattanachant, S. Benjakul, A. Tani, S. Maneerat. (2011). Food Control 22 (3–4): 401-407. https://doi.org/10.1016/j.foodcont.2010.09.010 DOI: https://doi.org/10.1016/j.foodcont.2010.09.010

Ibrahim, A.S., Raphael D.A., T. Zimmerman, S.A. Siddiqui, A.B. Altemimi, H. Fidan, T. Esatbeyoglu and R. V. Bakhshayesh. (2021). Lactic Acid Bacteria as Antimicrobial Agents: Food Safety and Microbial Food Spoilage Prevention: a review. Foods 10, 3131. https://doi.org/10.3390/foods10123131 DOI: https://doi.org/10.3390/foods10123131

Irianto, I. H. E. (2012). Produk Fermentasi Ikan. Penebar Swadaya Grup.

Kumar, M., Tiwari, S. K., & Srivastava, S. (2009). Purification and Characterization of Enterocin LR/6, a Bacteriocin from Enterococcus faecium LR/6. Applied Biochemistry and Biotechnology, 160(1), 40. https://doi.org/10.1007/s12010-009-8586-z DOI: https://doi.org/10.1007/s12010-009-8586-z

Kusmarwati, A., Arief, F. R., & Haryati, S. (2014). Eksplorasi Bakteriosin dari Bakteri Asam Laktat Asal Rusip Bangka dan Kalimantan. Jurnal Pascapanen dan Bioteknologi Kelautan dan Perikanan, 9(1), 29. https://doi.org/10.15578/jpbkp.v9i1.97 DOI: https://doi.org/10.15578/jpbkp.v9i1.97

Lawalata, H. J., & Rungkat, J. A. (2019). The potential of lactic acid bacteria to improve the quality and number of carnocine during fermentation process of Bakasang as a functional food. Journal of Physics: Conference Series, 1317(1). https://doi.org/10.1088/1742-6596/1317/1/012072 DOI: https://doi.org/10.1088/1742-6596/1317/1/012072

Lei, S., Zhao, R., Sun, J., Ran, J., Ruan, X., & Zhu, Y. (2020). Partial purification and characterization of a broad-spectrum bacteriocin produced by a Lactobacillus plantarum zrx03 isolated from infant’s feces. Food Science and Nutrition, 8(5), 2214–2222. https://doi.org/10.1002/fsn3.1428 DOI: https://doi.org/10.1002/fsn3.1428

Lim, E. (2016). Inhibitory effect of bacteriocin-producing lactic acid bacteria against histamine-forming bacteria isolated from Myeolchi - jeot. Fisheries and Aquatic Sciences, 1–10. https://doi.org/10.1186/s41240-016-0040-x DOI: https://doi.org/10.1186/s41240-016-0040-x

Ly, D., Mayrhofer, S., Schmidt, J. M., Zitz, U., & Domig, K. J. (2020). Biogenic amine contents and microbial characteristics of Cambodian fermented foods. Foods, 9(2), 1–19. https://doi.org/10.3390/foods9020198 DOI: https://doi.org/10.3390/foods9020198

Maulidayanti, S., Mubarik, N. R., & Suryani. (2019). Characterization of a bacteriocin produced by Lactobacillus rhamnosus IN13 isolated from inasua, a fermented fish product from Central Maluku, Indonesia. International Food Research Journal, 26(5), 1557–1563.

Putra, M. M. P., M. Y. Al-Hammam, G. Ahsan, K. K. B. Chandra, & I. D. Puspita. (2022). Antibacterial potency of cell free supernatant produced by lactic acid bacteria isolated from Indonesian fermented fish products against histamine-producing bacteria. Saintek Perikanan: Indonesian Journal of Fisheries Science and Technology, (18)1, 13-18. https://doi.org/10.14710/ijfst.18.1.13-18 DOI: https://doi.org/10.14710/ijfst.18.1.13-18

Paczosa, M. K., & Mecsas, J. (2016). Klebsiella pneumoniae: Going on the Offense with a Strong Defense. Microbiology and Molecular Biology Reviews, 80(3), 629–661. https://doi.org/10.1128/mmbr.00078-15 DOI: https://doi.org/10.1128/MMBR.00078-15

Parada, J. L., Caron, C. R., Bianchi, A., Medeiros, P., & Soccol, C. R. (2007). Bacteriocins from lactic acid bacteria: Purification, properties and use as biopreservatives. Brazilian Archives of Biology and Technology, 50(3), 521–542. DOI: https://doi.org/10.1590/S1516-89132007000300018

Pringsulaka, O., Thongngam, N., Suwannasai, N., Atthakor, W., Pothivejkul, K., & Rangsiruji, A. (2012). Partial characterisation of bacteriocins produced by lactic acid bacteria isolated from Thai fermented meat and fish products. Food Control, 23(2), 547–551. https://doi.org/10.1016/j.foodcont.2011.08.029 DOI: https://doi.org/10.1016/j.foodcont.2011.08.029

Sasanti, A. D., & Fitria, K. (2012). Aktivitas Penghambatan Isolat Bakteri Asam Laktat Ikan Nila dan Tongkol Terhadap Bakteri Merugikan Produk Perikanan. Jurnal Pengolahan Hasil Perikanan Indonesia, 15(2), 94–100. https://doi.org/10.17844/jphpi.v15i2.6168

Satomi, M. (2016). Effect of Histamine-producing Bacteria on Fermented Fishery Products. Food Science and Technology Research, 22(1), 1–21. https://doi.org/10.3136/fstr.22.1 DOI: https://doi.org/10.3136/fstr.22.1

Seyedsayamdost, M. R. (2019). Toward a global picture of bacterial secondary metabolism. Journal of Industrial Microbiology and Biotechnology, 46(3–4), 301–311. https://doi.org/10.1007/s10295-019-02136-y DOI: https://doi.org/10.1007/s10295-019-02136-y

Sidhu, P. K., & Nehra, K. (2019). Bacteriocin-nanoconjugates as emerging compounds for enhancing antimicrobial activity of bacteriocins. Journal of King Saud University - Science, 31(4), 758–767. https://doi.org/https://doi.org/10.1016/j.jksus.2017.12.007 DOI: https://doi.org/10.1016/j.jksus.2017.12.007

Wang, Y., Qin, Y., Xie, Q., Zhang, Y., Hu, J., & Li, P. (2018). Purification and Characterization of Plantaricin LPL-1, a Novel Class IIa Bacteriocin Produced by Lactobacillus plantarum LPL-1 Isolated from Fermented Fish. Frontiers in Microbiology, 9, 1–12. https://doi.org/10.3389/fmicb.2018.02276 DOI: https://doi.org/10.3389/fmicb.2018.02276

Whitmire, J. M., & Merrell, D. S. (2012). Successful Culture Techniques for Helicobacter Species: General Culture Techniques for Helicobacter pylori. Methods in Molecular Biology. 921, 17-27. https://doi.org/10.1007/978-1-62703-005-2_4 DOI: https://doi.org/10.1007/978-1-62703-005-2_4

Yoneyama, F., Ohno, K., Imura, Y., Li, M., Zendo, T., Nakayama, J., Matsuzaki, K., & Sonomoto, K. (2011). Lacticin Q-mediated selective toxicity depending on physicochemical features of membrane components. Antimicrobial Agents and Chemotherapy, 55(5), 2446–2450. 10.1128/AAC.00808-10 DOI: https://doi.org/10.1128/AAC.00808-10

Zhang, J., Yang, Y., Yang, H., Bu, Y., Yi, H., Zhang, L., Han, X., & Ai, L. (2018). Purification and partial characterization of bacteriocin Lac-B23, a novel bacteriocin production by Lactobacillus plantarum J23, isolated from Chinese traditional fermented milk. Frontiers in Microbiology, 9. https://doi.org/10.3389/fmicb.2018.02165 DOI: https://doi.org/10.3389/fmicb.2018.02165




How to Cite

M. M. P. . Putra, M. . Yaafi, A. H. . Mardinsyah, and I. D. . Puspita, “EVALUATION OF ANTIBACTERIAL ACTIVITY PRODUCED BY Weisella sp. GMP12 AND ITS POTENCY AS A STARTER TO ENHANCE FISH FERMENTED PRODUCTS QUALITY”, Khulna Univ. Stud., pp. 131–139, Dec. 2023.



Life Science

Similar Articles

1 2 3 4 5 6 > >> 

You may also start an advanced similarity search for this article.