• Rahat Bin Shahid Fisheries and Marine Resource Technology Discipline, Khulna University, Khulna-9208, Bangladesh
  • Sunuram Ray Institute for Integrated Studies on the Sundarbans and Coastal Eco-systems (IISSCE), Khulna University, Khulna-9208, Bangladesh.
  • Muhammad Abdur Rouf Fisheries and Marine Resource Technology Discipline, Khulna University, Khulna-9208, Bangladesh
  • Md. Golam Sarower Fisheries and Marine Resource Technology Discipline, Khulna University, Khulna-9208, Bangladesh




Antibiotic agent, Bacterial diseases, Enzyme activity, Growth performance


Oxytetracycline, an antimicrobial agent has been playing a potent role in aquaculture to control the bacterial diseases, but it’s over dose may pose an undesirable effect. However, the purpose of the experiment was to evaluate the impacts of dietary oxytetracycline on the primary productivity, growth performance, biochemical activity, as well as immunity performance of tilapia (Oreochromis niloticus) and rohu (Labeo rohita) in a polyculture system. Oxytetracycline was mixed with feed at 100 mg/kg and fed with no antibiotic was denoted as the control. A total of 480 fish were cultured for 70 days, comprising 240 tilapia (with a length of 14.63 cm and weight of 59.85 g in an average) and 240 rohu (with a length of 11.43 cm and weigh of 24.6 g in an average). The findings indicated that there was not any significant (p >0.05) change in the growth of treated fishes in comparison with the control one. Amylase activity increased significantly (p <0.05), while superoxide dismutase activity increased but in a non-significant (p >0.05) way in the both of fish species. Protease and catalase activities were found to decline significantly (p <0.05) in both species. There was no significant increase in plankton abundance in the treatment ponds. Spectrometry study of chlorophyll-a revealed in control and treatment ponds where, there found no significant (p> 0.05) variation among each week. These results suggested that oxytetracycline dosing rate at 100 mg/kg having no significant impact on the growth and enzymatic activity of poly-cultured tilapia and rohu as well as primary productivity of the pond. A therapeutic dose (100 mg/kg) of oxytetracycline is subjected to be safe, polyculture.


Download data is not yet available.


Abdelsalam, M., Mamdouh, Y., Elgendy, Medhat R. Elfadadny, Ali S. S., Ahmed H. Sherif , A. H., Kamal, S. & Abolghait A (2023) review of molecular diagnoses of bacterial fish diseases. Aquaculture International, 31, 417–434. DOI: https://doi.org/10.1007/s10499-022-00983-8

AOAC (1984) “Official Methods of Analysis of the Association of Official Analytical Chemists,” 14th ed. Association of Official Analytical Chemists, Inc., Arlington, VA.

Beers R.F, Sizer I.W. (1952). A spectrophotometric method for measuring the breakdown of hydrogen peroxide by catalase. Journal of Biological Chemistry, 195, 133–140. DOI: https://doi.org/10.1016/S0021-9258(19)50881-X

Bernfelt, P. (1955). Amylase and enzymes of carbonhydrate metabolism. Methods in Enzymology (SP Colowick, NO Kaplan, Eds.), Academic press, New York, 149-158.

Boeger, W. A., Guimarães, A. T. B., Romão, S., Ostrensky, A., Zamberlan, E., & Falkiewicz, F. H. (2003, April). Histopathology as an approach to evaluate the effect of an oil spill on fishes of the Arroio Saldanha and

Rio Iguacu (Brazil). In International Oil Spill Conference (Vol. 2003, No. 1, pp. 955-961). American Petroleum Institute. DOI: https://doi.org/10.7901/2169-3358-2003-1-955

Brown, M. L., & Murphy, B. R. (1991). Relationship of relative weight (W r) to proximate composition of juvenile striped bass and hybrid striped bass. Transactions of the American Fisheries Society, 120(4), 509-518. DOI: https://doi.org/10.1577/1548-8659(1991)120<0509:RORWTP>2.3.CO;2

Das, R., Swain, P., Sahoo, S. N., Mishra, S. S., Choudhary, P., Debbarma, J.,& Patil, P. K. (2021). Evaluation of oxytetracycline hydrochloride (OTC) on non‐specific immunity, enzymatic profiles and tissue level retention in Labeo rohita (Hamilton, 1822) after administration through feed. Aquaculture Research, 52(7), 3301-3309. DOI: https://doi.org/10.1111/are.15175

Dureja, P., & Rathore, H. S. (2012). Pesticide residues in fish. Pesticides’,(eds. HS Rathore et al.,), 361-392.

El-Sayed, A. F. M. (2006). Current state and future potential. In Tilapia culture (pp. 1-24). Wallingford UK: CABI Publishing. DOI: https://doi.org/10.1079/9780851990149.0001

Hentschel, D. M., Park, K. M., Cilenti, L., Zervos, A. S., Drummond, I., & Bonventre, J. V. (2005). Acute renal failure in zebrafish: a novel system to study a complex disease. American Journal of Physiology Renal Physiology, 288(5), F923-F929. DOI: https://doi.org/10.1152/ajprenal.00386.2004

Hoseini, S. M., & Yousefi, M. (2019). Beneficial effects of thyme (Thymus vulgaris) extract on oxytetracycline‐ induced stress response, immunosuppression, oxidative stress and enzymatic changes in rainbow trout (Oncorhynchus mykiss). Aquaculture Nutrition, 25(2), 298-309. DOI: https://doi.org/10.1111/anu.12853

Ingram, W. M., & Palmer, C. M. (1952). Simplified procedures for collecting, examining, and recording plankton in water. Journal (American Water Works Association), 44(7), 617-624. DOI: https://doi.org/10.1002/j.1551-8833.1952.tb15841.x

Islam, M. J., Rasul, M. G., Kashem, M. A., Hossain, M. M., Liza, A. A., Sayeed, M. A., & Hossain, M. M. (2015). Effect of oxytetracycline on Thai silver barb (Barbonymus gonionotus) and on it's culture environment. Journal of Fisheries and Aquatic Science, 10(5), 323. DOI: https://doi.org/10.3923/jfas.2015.323.336

Jeffrey, S. T., & Humphrey, G. F. (1975). New spectrophotometric equations for determining chlorophylls a, b, c1 and c2 in higher plants, algae and natural phytoplankton. Biochemie und Physiologie Der Pflanzen, 167(2), 191-194. DOI: https://doi.org/10.1016/S0015-3796(17)30778-3

Jing, T. Y., & Zhao, X. Y. (1995). The improved pyrogallol method by using terminating agent for superoxide dismutase measurement. Progress in Biochemistry and Biophysics, 22(1), 84-86.

Lee, J. W., Choi, H., Hwang, U. K., Kang, J. C., Kang, Y. J., Kim, K. I., & Kim, J. H. (2019). Toxic effects of lead exposure on bioaccumulation, oxidative stress, neurotoxicity, and immune responses in fish: A review. Environmental Toxicology and Pharmacology, 68, 101-108. DOI: https://doi.org/10.1016/j.etap.2019.03.010

Limbu, S. M., Zhou, L., Sun, S. X., Zhang, M. L., & Du, Z. Y. (2018). Chronic exposure to low environmental concentrations and legal aquaculture doses of antibiotics cause systemic adverse effects in Nile tilapia and provoke differential human health risk. Environment International, 115, 205-219. DOI: https://doi.org/10.1016/j.envint.2018.03.034

Marklund, S., & Marklund, G. (1974). Involvement of the superoxide anion radical in the autoxidation of pyrogallol and a convenient assay for superoxide dismutase. European Journal of Biochemistry, 47(3), 469- 474. DOI: https://doi.org/10.1111/j.1432-1033.1974.tb03714.x

Mog, M., Pandey, P. K., Khatei, A., Parhi, J., Barman, A. S., Acharya, A., & Choudhury, T. G. (2021). Pathophysiological response and IL-1β gene expression of Labeo rohita (Hamilton, 1822) fingerlings fed with Oxytetracycline based pharmaceutical diet against Aeromonas hydrophila infection. Aquaculture, 540, 736716. DOI: https://doi.org/10.1016/j.aquaculture.2021.736716

Oliveira, R., McDonough, S., Ladewig, J. C., Soares, A. M., Nogueira, A. J., & Domingues, I. (2013). Effects of oxytetracycline and amoxicillin on development and biomarkers activities of zebrafish (Danio rerio). Environmental Toxicology and Pharmacology, 36(3), 903-912. DOI: https://doi.org/10.1016/j.etap.2013.07.019

Sarower, M.G., Ray, S., Hasan, M.A., Ferdous, S. and Iqbal, M., 2014. Antioxidant Potential and Nutrient Content in Selected Fish Species of Different Feeding Habits in Bangladesh. American Journal of PharmTech Research, 4(4), pp. 2249-3387.

Siddique, M.N., Hasan, M.J., Reza, M.Z., Islam, M.R., Boduruzaman, M., Reza, M.F. and Ray, S., 2011. Effect of freezing time on nutritional value of Jatpunti (Puntius sophore), Sarpunti (P. sarana) and Thaisarpunti (P. gonionotus). Bangladesh Research Publications Journal, 5(4), pp.387-392.

Siddiqui, M.N., Biswas, P.K., Ray, S., Hasan, M.J. and Reza, M.F., 2010. Effect of Freezing Time on the Nutritional Value of Mystus gulio (Nuna tengra), Mystus tengra (Bazari tengra) and Mystus cavasius (Ghulsha tengra). Journal of Science Foundation, 8(1-2), pp.119-122. DOI: https://doi.org/10.3329/jsf.v8i1-2.14634

Reda, R. M., Ibrahim, R. E., Ahmed, E. N. G., & El-Bouhy, Z. M. (2013). Effect of oxytetracycline and florfenicol as growth promoters on the health status of cultured Oreochromis niloticus. The Egyptian Journal of Aquatic Research, 39(4), 241-248. DOI: https://doi.org/10.1016/j.ejar.2013.12.001

Sanchez‐Martínez, J. G., Pérez‐Castañeda, R., Rábago‐Castro, J. L., Aguirre‐Guzmán, G., & Vázquez‐Sauceda, M. L. (2008). A preliminary study on the effects on growth, condition, and feeding indexes in channel catfish, Ictalurus punctatus, after the prophylactic use of potassium permanganate and oxytetracycline. Journal of the World Aquaculture Society, 39(5), 664-670. DOI: https://doi.org/10.1111/j.1749-7345.2008.00195.x

Seoane, M., Rioboo, C., Herrero, C., & Cid, Á. (2014). Toxicity induced by three antibiotics commonly used in aquaculture on the marine microalga Tetraselmis suecica (Kylin) Butch. Marine Environmental Research, 101, 1-7. DOI: https://doi.org/10.1016/j.marenvres.2014.07.011

Srivastava, P., Singh, A. and Pandey, A.K., 2016. Pesticides toxicity in fishes: biochemical, physiological and genotoxic aspects. Biochemical and Cellular Archives, 16(2), pp.199-218.

Nunes, M. T., & Bianco, A. C. (1985). Thyroxine induced transformation in sarcoplasmic reticulum of rabbit soleus and psoas muscles. Zeitschrift für Naturforschung C, 40(9-10), 726-734. DOI: https://doi.org/10.1515/znc-1985-9-1025

Walter, H. E. (1984). Proteases and their inhibitors. 2. 15. 2 Method with haemoglobin, casein and azocoll as substrate. Methods of Enzymatic Analysis, 270-277.

Wang, X., Wei, Z., Liu, D., & Zhao, G. (2011). Effects of NaCl and silicon on activities of antioxidative enzymes in roots, shoots and leaves of alfalfa. African Journal of Biotechnology, 10(4), 545.

Yonar, M. E. (2012). The effect of lycopene on oxytetracycline-induced oxidative stress and immunosuppression in rainbow trout (Oncorhynchus mykiss, W.). Fish and Shellfish Immunology, 32(6), 994-1001. DOI: https://doi.org/10.1016/j.fsi.2012.02.012

Yonar, M. E., Yonar, S. M., & Silici, S. (2011). Protective effect of propolis against oxidative stress and immunosuppression induced by oxytetracycline in rainbow trout (Oncorhynchus mykiss, W.). Fish and Shellfish Immunology, 31(2), 318-325. DOI: https://doi.org/10.1016/j.fsi.2011.05.019




How to Cite




Life Science

Similar Articles

1 2 3 4 5 6 7 8 9 10 > >> 

You may also start an advanced similarity search for this article.

Most read articles by the same author(s)