PRODUCTION AND CHARACTERIZATION OF HYDROTHERMALLY PROCESSRD SOLID BIOENERGY FROM AN INVASIVE SPECIES
DOI:
https://doi.org/10.53808/KUS.2024.21.01.1136-lsKeywords:
Hydrochar, Invasive species, Sphagneticola trilobata, Optimization, Bioenergy, Carbonization.Abstract
Invasive alien species (IAS) are one of the most serious environmental concerns for native biodiversity, as they can alter ecosystem functions through species homogenization. Invasive species can also affect human health and cause economic damage to agriculture. This study aimed to produce and characterize hydrochar as solid bio-energy derived from the invasive species Sphagneticola trilobata (ISST) through hydrothermal carbonization. The effect of different factors, namely temperature and reaction time towards the hydrochar yield (%) was optimized by central composite design (CCD) using statistical response surface methodology (RSM). To verify the hydrochar as an energy material, the physicochemical, structural and morphological properties were studied using SEM, FTIR, TGA, elemental and proximate analysis. The optimized temperature was 180.31 °C and the time was 2.23 hours. The best yield of the hydrochar was 51.54%. The calorific value of hydrochar increased from the calorific value of 13.41 MJ/Kg of Sphagneticola trilobata biomass to 17.03 MJ/Kg. The amounts of sulfur (S) and ash reduced dramatically. Moreover, greater carbon content and lower oxygen content were found in the hydrochar than in the raw ISST. Consequently, it is an advantageous technology for improving the characteristics of biomass of invasive species to hydrochar as fuel for energy generation.
Downloads
References
Akter, A., & Zuberi, M. I. (2009). Invasive alien species in Northern Bangladesh: Identification, inventory and impacts. International Journal of Biodiversity and Conservation, 1, 129–134.
Álvarez, X., Cancela, Á., Freitas, V., Valero, E., Sánchez, Á., & Acuña-Alonso, C. (2020). Hydrothermal Carbonization and Pellet Production from Egeria densa and Lemna minor. Plants, 9(4), Article 4. https://doi.org/10.3390/plants9040425 DOI: https://doi.org/10.3390/plants9040425
Arutyunov, V. S., & Lisichkin, G. V. (2017). Energy resources of the 21st century: Problems and forecasts. Can renewable energy sources replace fossil fuels†. Russian Chemical Reviews, 86(8), 777. https://doi.org/10.1070/RCR4723 DOI: https://doi.org/10.1070/RCR4723
Assis, E. I. N. C., Gidudu, B., & Chirwa, E. M. N. (2022). Hydrothermal carbonisation of paper sludge: Effect of process conditions on hydrochar fuel characteristics and energy recycling efficiency. Journal of Cleaner Production, 373, 133775. https://doi.org/10.1016/j.jclepro.2022.133775 DOI: https://doi.org/10.1016/j.jclepro.2022.133775
Balmuk, G., Cay, H., Duman, G., Kantarli, I. C., & Yanik, J. (2023). Hydrothermal carbonization of olive oil industry waste into solid fuel: Fuel characteristics and combustion performance. Energy, 278, 127803. https://doi.org/10.1016/j.energy.2023.127803 DOI: https://doi.org/10.1016/j.energy.2023.127803
Basso, D., Weiss-Hortala, E., Patuzzi, F., Castello, D., Baratieri, M., & Fiori, L. (2015). Hydrothermal carbonization of off-specification compost: A byproduct of the organic municipal solid waste treatment. Bioresource Technology, 182, 217–224. https://doi.org/10.1016/j.biortech.2015.01.118 DOI: https://doi.org/10.1016/j.biortech.2015.01.118
Bridgewater, L. L., Baird, R. B., Eaton, A. D., Rice, E. W., American Public Health Association, American Water Works Association, & Water Environment Federation (Eds.). (2017). Standard methods for the examination of water and wastewater (23rd edition). American Public Health Association.
Cao, Y., He, M., Dutta, S., Luo, G., Zhang, S., & Tsang, D. C. W. (2021). Hydrothermal carbonization and liquefaction for sustainable production of hydrochar and aromatics. Renewable and Sustainable Energy Reviews, 152, 111722. https://doi.org/10.1016/j.rser.2021.111722 DOI: https://doi.org/10.1016/j.rser.2021.111722
Cavali, M., Libardi Junior, N., de Sena, J. D., Woiciechowski, A. L., Soccol, C. R., Belli Filho, P., Bayard, R., Benbelkacem, H., & de Castilhos Junior, A. B. (2023). A review on hydrothermal carbonization of potential biomass wastes, characterization and environmental applications of hydrochar, and biorefinery perspectives of the process. Science of The Total Environment, 857, 159627. https://doi.org/10.1016/j.scitotenv.2022.159627 DOI: https://doi.org/10.1016/j.scitotenv.2022.159627
Chen, C., Ma, X., & He, Y. (2012). Co-pyrolysis characteristics of microalgae Chlorella vulgaris and coal through TGA. Bioresource Technology, 117, 264–273. https://doi.org/10.1016/j.biortech.2012.04.077 DOI: https://doi.org/10.1016/j.biortech.2012.04.077
Cheng, C., He, Q., Ismail, T. M., Mosqueda, A., Ding, L., Yu, J., & Yu, G. (2022). Hydrothermal carbonization of rape straw: Effect of reaction parameters on hydrochar and migration of AAEMs. Chemosphere, 291, 132785. https://doi.org/10.1016/j.chemosphere.2021.132785 DOI: https://doi.org/10.1016/j.chemosphere.2021.132785
Davis, A. S., Cousens, R. D., Hill, J., Mack, R. N., Simberloff, D., & Raghu, S. (2010). Screening bioenergy feedstock crops to mitigate invasion risk. Frontiers in Ecology and the Environment, 8(10), 533–539. https://doi.org/10.1890/090030 DOI: https://doi.org/10.1890/090030
Demirbas, A. (2008). Relationships Proximate Analysis Results and Higher Heating Values of Lignites. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 30(20), 1876–1883. https://doi.org/10.1080/10916460701462846 DOI: https://doi.org/10.1080/10916460701462846
Haribabu, K., Sivasubramanian, V., Deepanraj, B., & Ong, H. C. (2022). Thematic issue: Bioenergy and biorefinery approaches for environmental sustainability. Biomass Conversion and Biorefinery, 12(5), 1433–1433. https://doi.org/10.1007/s13399-021-01989-7 DOI: https://doi.org/10.1007/s13399-021-01989-7
Heracleous, E., Lappas, A., & Serrano, D. (2017). Special thematic issue in “Biomass Conversion and Biorefinery” “Advances in catalytic biomass fast pyrolysis and bio-oil upgrading.” Biomass Conversion and Biorefinery, 7(3), 275–276. https://doi.org/10.1007/s13399-017-0284-4 DOI: https://doi.org/10.1007/s13399-017-0284-4
Kang, S., Li, X., Fan, J., & Chang, J. (2012). Characterization of Hydrochars Produced by Hydrothermal Carbonization of Lignin, Cellulose, d-Xylose, and Wood Meal. Industrial & Engineering Chemistry Research, 51(26), 9023–9031. https://doi.org/10.1021/ie300565d DOI: https://doi.org/10.1021/ie300565d
Liu, C. F., Xu, F., Sun, J. X., Ren, J. L., Curling, S., Sun, R. C., Fowler, P., & Baird, M. S. (2006). Physicochemical characterization of cellulose from perennial ryegrass leaves (Lolium perenne). Carbohydrate Research, 341(16), 2677–2687. https://doi.org/10.1016/j.carres.2006.07.008 DOI: https://doi.org/10.1016/j.carres.2006.07.008
Liu, L., Zhuang, D., Jiang, D., & Fu, J. (2013). Assessment of the biomass energy potentials and environmental benefits of Jatropha curcas L. in Southwest China. Biomass and Bioenergy, 56, 342–350. https://doi.org/10.1016/j.biombioe.2013.05.030 DOI: https://doi.org/10.1016/j.biombioe.2013.05.030
Liu, Q., Zhang, G., Kong, G., Liu, M., Cao, T., Guo, Z., Zhang, X., & Han, L. (2023). Valorizing manure waste into green coal-like hydrochar: Parameters study, physicochemical characteristics, combustion behaviors and kinetics. Renewable Energy, 216, 119103. https://doi.org/10.1016/j.renene.2023.119103 DOI: https://doi.org/10.1016/j.renene.2023.119103
Mumme, J., Eckervogt, L., Pielert, J., Diakité, M., Rupp, F., & Kern, J. (2011). Hydrothermal carbonization of anaerobically digested maize silage. Bioresource Technology, 102(19), 9255–9260. https://doi.org/10.1016/j.biortech.2011.06.099 DOI: https://doi.org/10.1016/j.biortech.2011.06.099
Naderi, M., & Vesali-Naseh, M. (2021). Hydrochar-derived fuels from waste walnut shell through hydrothermal carbonization: Characterization and effect of processing parameters. Biomass Conversion and Biorefinery, 11(5), 1443–1451. https://doi.org/10.1007/s13399-019-00513-2 DOI: https://doi.org/10.1007/s13399-019-00513-2
Naeem, S., Bunker, D. E., Hector, A., Loreau, M., & Perrings, C. (2009). Biodiversity, Ecosystem Functioning, and Human Wellbeing: An Ecological and Economic Perspective. OUP Oxford. DOI: https://doi.org/10.1093/acprof:oso/9780199547951.001.0001
Nanda, S., Mohammad, J., Reddy, S. N., Kozinski, J. A., & Dalai, A. K. (2014). Pathways of lignocellulosic biomass conversion to renewable fuels. Biomass Conversion and Biorefinery, 4(2), 157–191. https://doi.org/10.1007/s13399-013-0097-z DOI: https://doi.org/10.1007/s13399-013-0097-z
Nsair, A., Onen Cinar, S., Alassali, A., Abu Qdais, H., & Kuchta, K. (2020). Operational Parameters of Biogas Plants: A Review and Evaluation Study. Energies, 13(15), Article 15. https://doi.org/10.3390/en13153761 DOI: https://doi.org/10.3390/en13153761
Obi, O. F., Pecenka, R., & Clifford, M. J. (2022). A Review of Biomass Briquette Binders and Quality Parameters. Energies, 15(7), Article 7. https://doi.org/10.3390/en15072426 DOI: https://doi.org/10.3390/en15072426
Parvin, A., Piashi, S.R., & Das, A. (2022). A spatial model towards renewable energy and water safe village. Khulna University Studies, Special Issue (ICSTEM4IR): 993-1006. https://doi.org/10.53808/KUS.2022.ICSTEM4IR.0257-se DOI: https://doi.org/10.53808/KUS.2022.ICSTEM4IR.0257-se
Phang, F. J. F., Soha, M., Khaerudini, D. S., Timuda, G. E., Chew, J. J., How, B. S., Loh, S. K., Yusup, S., & Sunarso, J. (2023). Catalytic wet torrefaction of lignocellulosic biomass: An overview with emphasis on fuel application. South African Journal of Chemical Engineering, 43(1), 162–189. https://doi.org/10.1016/j.sajce.2022.10.008 DOI: https://doi.org/10.1016/j.sajce.2022.10.008
Raspolli Galletti, A. M., D’Alessio, A., Licursi, D., Antonetti, C., Valentini, G., Galia, A., & Nassi o Di Nasso, N. (2015). Midinfrared FT-IR as a Tool for Monitoring Herbaceous Biomass Composition and Its Conversion to Furfural. Journal of Spectroscopy, 2015, e719042. https://doi.org/10.1155/2015/719042 DOI: https://doi.org/10.1155/2015/719042
Sultana, A., Novera, T. M., Islam, Md. A., Limon, S. H., & Islam, Md. A. (2022). Multi-response optimization for the production of Albizia saman bark hydrochar through hydrothermal carbonization: Characterization and pyrolysis kinetic study. Biomass Conversion and Biorefinery, 12(12), 5783–5797. https://doi.org/10.1007/s13399-020-01182-2 DOI: https://doi.org/10.1007/s13399-020-01182-2
Telmo, C., Lousada, J., & Moreira, N. (2010). Proximate analysis, backwards stepwise regression between gross calorific value, ultimate and chemical analysis of wood. Bioresource Technology, 101(11), 3808–3815. https://doi.org/10.1016/j.biortech.2010.01.021 DOI: https://doi.org/10.1016/j.biortech.2010.01.021
Van Meerbeek, K., Appels, L., Dewil, R., Calmeyn, A., Lemmens, P., Muys, B., & Hermy, M. (2015). Biomass of invasive plant species as a potential feedstock for bioenergy production. Biofuels, Bioproducts and Biorefining, 9(3), 273–282. https://doi.org/10.1002/bbb.1539 DOI: https://doi.org/10.1002/bbb.1539
Volpe, M., Messineo, A., Mäkelä, M., Barr, M. R., Volpe, R., Corrado, C., & Fiori, L. (2020). Reactivity of cellulose during hydrothermal carbonization of lignocellulosic biomass. Fuel Processing Technology, 206, 106456. https://doi.org/10.1016/j.fuproc.2020.106456 DOI: https://doi.org/10.1016/j.fuproc.2020.106456
Wang, J., Li, W., Ciais, P., Li, L. Z. X., Chang, J., Goll, D., Gasser, T., Huang, X., Devaraju, N., & Boucher, O. (2021). Global cooling induced by biophysical effects of bioenergy crop cultivation. Nature Communications, 12(1), Article 1. https://doi.org/10.1038/s41467-021-27520-0 DOI: https://doi.org/10.1038/s41467-021-27520-0
Wu, S., Wang, Q., Cui, D., Sun, H., Yin, H., Xu, F., & Wang, Z. (2023). Evaluation of fuel properties and combustion behaviour of hydrochar derived from hydrothermal carbonisation of agricultural wastes. Journal of the Energy Institute, 108, 101209. https://doi.org/10.1016/j.joei.2023.101209 DOI: https://doi.org/10.1016/j.joei.2023.101209
Youn, H. S., Kim, S. J., Kim, G. H., & Um, B. H. (2023). Enhancing the characteristics of hydrochar via hydrothermal carbonization of Korean native kenaf: The effect of ethanol solvent concentration as co-solvent and reaction temperature. Fuel, 331, 125738. https://doi.org/10.1016/j.fuel.2022.125738 DOI: https://doi.org/10.1016/j.fuel.2022.125738
Yu, Y., Guo, Y., Wang, G., El-Kassaby, Y. A., & Sokhansanj, S. (2022). Hydrothermal carbonization of waste ginkgo leaf residues for solid biofuel production: Hydrochar characterization and its pelletization. Fuel, 324, 124341. https://doi.org/10.1016/j.fuel.2022.124341 DOI: https://doi.org/10.1016/j.fuel.2022.124341
Zhang, B., Heidari, M., Regmi, B., Salaudeen, S., Arku, P., Thimmannagari, M., & Dutta, A. (2018). Hydrothermal Carbonization of Fruit Wastes: A Promising Technique for Generating Hydrochar. Energies, 11(8), Article 8. https://doi.org/10.3390/en11082022 DOI: https://doi.org/10.3390/en11082022
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Khulna University Studies
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.