PRODUCTION AND CHARACTERIZATION OF HYDROTHERMALLY PROCESSRD SOLID BIOENERGY FROM AN INVASIVE SPECIES

Authors

  • Md. Azharul Islam Forestry and Wood Technology Discipline, Khulna University, Khulna 9208, Bangladesh
  • Ishrat Jerin Forestry and Wood Technology Discipline, Khulna University, Khulna-9208, Bangladesh
  • Md. Atikul Islam Environmental Science Discipline, Khulna University, Khulna 9208, Bangladesh
  • Partho Protim Das Forestry and Wood Technology Discipline, Khulna University, Khulna-9208, Bangladesh
  • Zhongchuang Liu cGreen Intelligence Environmental School and Chongqing Multiple-source Technology Engineering Research Center for Ecological Environment Monitoring, Yangtze Normal University, No. 16, Juxian Avenue, Fuling District, Chongqing, China
  • B.H. Hameed Department of Chemical Engineering, College of Engineering, Qatar University, P.O. Box: 2713, Doha, Qatar

DOI:

https://doi.org/10.53808/KUS.2024.21.01.1136-ls

Keywords:

Hydrochar, Invasive species, Sphagneticola trilobata, Optimization, Bioenergy, Carbonization.

Abstract

Invasive alien species (IAS) are one of the most serious environmental concerns for native biodiversity, as they can alter how the ecosystem functions through species homogenization. Invasive species can affect human health, disrupt ecosystem process, economic damage to agriculture. The conversion of invasive species through hydrothermal carbonization process can reduce the negative impact of invasive species. The objective of this study was to produce and characterize hydrochar as solid bio-energy derived from the invasive species Sphagneticola trilobata (ISST), an invasive plant species, specifically through hydrothermal carbonization. This technology can convert invasive species into biofuel by reducing their negative impact on the environment. The effect of different factors, namely temperature and reaction time towards the hydrochar yield (%) was optimized by central composite design (CCD) using statistical response surface methodology (RSM). Here the optimized conditions for hydrochar production have been identified. The optimized temperature was 180.31 °C and the time was 2.23 hours. The best yield of the hydrochar was 51.54%. To verify the hydrochar as an energy material, the physicochemical, structural and morphological properties were found using SEM, FTIR, TGA, elemental and proximate analysis. The calorific value of hydrochar increased from the calorific value of 13.41 MJ/Kg of Sphagneticola trilobata biomass to 17.03 MJ/Kg. The amounts of sulfur (S) and ash reduced dramatically. Moreover, a greater carbon content was present in the green biomass than oxygen content. Consequently, it is an advantageous technology for improving the characteristics of biomass of invasive species to hydrochar as fuel for energy generation.

Downloads

Download data is not yet available.

References

Akter, A., & Zuberi, M. I. (2009). Invasive alien species in Northern Bangladesh: Identification, inventory and impacts. International Journal of Biodiversity and Conservation, 1, 129–134.

Álvarez, X., Cancela, Á., Freitas, V., Valero, E., Sánchez, Á., & Acuña-Alonso, C. (2020). Hydrothermal Carbonization and Pellet Production from Egeria densa and Lemna minor. Plants, 9(4), Article 4. https://doi.org/10.3390/plants9040425

Arutyunov, V. S., & Lisichkin, G. V. (2017). Energy resources of the 21st century: Problems and forecasts. Can renewable energy sources replace fossil fuels†. Russian Chemical Reviews, 86(8), 777. https://doi.org/10.1070/RCR4723

Assis, E. I. N. C., Gidudu, B., & Chirwa, E. M. N. (2022). Hydrothermal carbonisation of paper sludge: Effect of process conditions on hydrochar fuel characteristics and energy recycling efficiency. Journal of Cleaner Production, 373, 133775. https://doi.org/10.1016/j.jclepro.2022.133775

Balmuk, G., Cay, H., Duman, G., Kantarli, I. C., & Yanik, J. (2023). Hydrothermal carbonization of olive oil industry waste into solid fuel: Fuel characteristics and combustion performance. Energy, 278, 127803. https://doi.org/10.1016/j.energy.2023.127803

Basso, D., Weiss-Hortala, E., Patuzzi, F., Castello, D., Baratieri, M., & Fiori, L. (2015). Hydrothermal carbonization of off-specification compost: A byproduct of the organic municipal solid waste treatment. Bioresource Technology, 182, 217–224. https://doi.org/10.1016/j.biortech.2015.01.118

Bridgewater, L. L., Baird, R. B., Eaton, A. D., Rice, E. W., American Public Health Association, American Water Works Association, & Water Environment Federation (Eds.). (2017). Standard methods for the examination of water and wastewater (23rd edition). American Public Health Association.

Cao, Y., He, M., Dutta, S., Luo, G., Zhang, S., & Tsang, D. C. W. (2021). Hydrothermal carbonization and liquefaction for sustainable production of hydrochar and aromatics. Renewable and Sustainable Energy Reviews, 152, 111722. https://doi.org/10.1016/j.rser.2021.111722

Cavali, M., Libardi Junior, N., de Sena, J. D., Woiciechowski, A. L., Soccol, C. R., Belli Filho, P., Bayard, R., Benbelkacem, H., & de Castilhos Junior, A. B. (2023). A review on hydrothermal carbonization of potential biomass wastes, characterization and environmental applications of hydrochar, and biorefinery perspectives of the process. Science of The Total Environment, 857, 159627. https://doi.org/10.1016/j.scitotenv.2022.159627

Chen, C., Ma, X., & He, Y. (2012). Co-pyrolysis characteristics of microalgae Chlorella vulgaris and coal through TGA. Bioresource Technology, 117, 264–273. https://doi.org/10.1016/j.biortech.2012.04.077

Cheng, C., He, Q., Ismail, T. M., Mosqueda, A., Ding, L., Yu, J., & Yu, G. (2022). Hydrothermal carbonization of rape straw: Effect of reaction parameters on hydrochar and migration of AAEMs. Chemosphere, 291, 132785. https://doi.org/10.1016/j.chemosphere.2021.132785

Davis, A. S., Cousens, R. D., Hill, J., Mack, R. N., Simberloff, D., & Raghu, S. (2010). Screening bioenergy feedstock crops to mitigate invasion risk. Frontiers in Ecology and the Environment, 8(10), 533–539. https://doi.org/10.1890/090030

Demirbas, A. (2008). Relationships Proximate Analysis Results and Higher Heating Values of Lignites. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 30(20), 1876–1883. https://doi.org/10.1080/10916460701462846

Haribabu, K., Sivasubramanian, V., Deepanraj, B., & Ong, H. C. (2022). Thematic issue: Bioenergy and biorefinery approaches for environmental sustainability. Biomass Conversion and Biorefinery, 12(5), 1433–1433. https://doi.org/10.1007/s13399-021-01989-7

Heracleous, E., Lappas, A., & Serrano, D. (2017). Special thematic issue in “Biomass Conversion and Biorefinery” “Advances in catalytic biomass fast pyrolysis and bio-oil upgrading.” Biomass Conversion and Biorefinery, 7(3), 275–276. https://doi.org/10.1007/s13399-017-0284-4

Kang, S., Li, X., Fan, J., & Chang, J. (2012). Characterization of Hydrochars Produced by Hydrothermal Carbonization of Lignin, Cellulose, d-Xylose, and Wood Meal. Industrial & Engineering Chemistry Research, 51(26), 9023–9031. https://doi.org/10.1021/ie300565d

Liu, C. F., Xu, F., Sun, J. X., Ren, J. L., Curling, S., Sun, R. C., Fowler, P., & Baird, M. S. (2006). Physicochemical characterization of cellulose from perennial ryegrass leaves (Lolium perenne). Carbohydrate Research, 341(16), 2677–2687. https://doi.org/10.1016/j.carres.2006.07.008

Liu, L., Zhuang, D., Jiang, D., & Fu, J. (2013). Assessment of the biomass energy potentials and environmental benefits of Jatropha curcas L. in Southwest China. Biomass and Bioenergy, 56, 342–350. https://doi.org/10.1016/j.biombioe.2013.05.030

Liu, Q., Zhang, G., Kong, G., Liu, M., Cao, T., Guo, Z., Zhang, X., & Han, L. (2023). Valorizing manure waste into green coal-like hydrochar: Parameters study, physicochemical characteristics, combustion behaviors and kinetics. Renewable Energy, 216, 119103. https://doi.org/10.1016/j.renene.2023.119103

Mumme, J., Eckervogt, L., Pielert, J., Diakité, M., Rupp, F., & Kern, J. (2011). Hydrothermal carbonization of anaerobically digested maize silage. Bioresource Technology, 102(19), 9255–9260. https://doi.org/10.1016/j.biortech.2011.06.099

Naderi, M., & Vesali-Naseh, M. (2021). Hydrochar-derived fuels from waste walnut shell through hydrothermal carbonization: Characterization and effect of processing parameters. Biomass Conversion and Biorefinery, 11(5), 1443–1451. https://doi.org/10.1007/s13399-019-00513-2

Naeem, S., Bunker, D. E., Hector, A., Loreau, M., & Perrings, C. (2009). Biodiversity, Ecosystem Functioning, and Human Wellbeing: An Ecological and Economic Perspective. OUP Oxford.

Nanda, S., Mohammad, J., Reddy, S. N., Kozinski, J. A., & Dalai, A. K. (2014). Pathways of lignocellulosic biomass conversion to renewable fuels. Biomass Conversion and Biorefinery, 4(2), 157–191. https://doi.org/10.1007/s13399-013-0097-z

Nsair, A., Onen Cinar, S., Alassali, A., Abu Qdais, H., & Kuchta, K. (2020). Operational Parameters of Biogas Plants: A Review and Evaluation Study. Energies, 13(15), Article 15. https://doi.org/10.3390/en13153761

Obi, O. F., Pecenka, R., & Clifford, M. J. (2022). A Review of Biomass Briquette Binders and Quality Parameters. Energies, 15(7), Article 7. https://doi.org/10.3390/en15072426

Parvin, A., Piashi, S.R., & Das, A. (2022). A spatial model towards renewable energy and water safe village. Khulna University Studies, Special Issue (ICSTEM4IR): 993-1006. https://doi.org/10.53808/KUS.2022.ICSTEM4IR.0257-se

Phang, F. J. F., Soha, M., Khaerudini, D. S., Timuda, G. E., Chew, J. J., How, B. S., Loh, S. K., Yusup, S., & Sunarso, J. (2023). Catalytic wet torrefaction of lignocellulosic biomass: An overview with emphasis on fuel application. South African Journal of Chemical Engineering, 43(1), 162–189. https://doi.org/10.1016/j.sajce.2022.10.008

Raspolli Galletti, A. M., D’Alessio, A., Licursi, D., Antonetti, C., Valentini, G., Galia, A., & Nassi o Di Nasso, N. (2015). Midinfrared FT-IR as a Tool for Monitoring Herbaceous Biomass Composition and Its Conversion to Furfural. Journal of Spectroscopy, 2015, e719042. https://doi.org/10.1155/2015/719042

Sultana, A., Novera, T. M., Islam, Md. A., Limon, S. H., & Islam, Md. A. (2022). Multi-response optimization for the production of Albizia saman bark hydrochar through hydrothermal carbonization: Characterization and pyrolysis kinetic study. Biomass Conversion and Biorefinery, 12(12), 5783–5797. https://doi.org/10.1007/s13399-020-01182-2

Telmo, C., Lousada, J., & Moreira, N. (2010). Proximate analysis, backwards stepwise regression between gross calorific value, ultimate and chemical analysis of wood. Bioresource Technology, 101(11), 3808–3815. https://doi.org/10.1016/j.biortech.2010.01.021

Van Meerbeek, K., Appels, L., Dewil, R., Calmeyn, A., Lemmens, P., Muys, B., & Hermy, M. (2015). Biomass of invasive plant species as a potential feedstock for bioenergy production. Biofuels, Bioproducts and Biorefining, 9(3), 273–282. https://doi.org/10.1002/bbb.1539

Volpe, M., Messineo, A., Mäkelä, M., Barr, M. R., Volpe, R., Corrado, C., & Fiori, L. (2020). Reactivity of cellulose during hydrothermal carbonization of lignocellulosic biomass. Fuel Processing Technology, 206, 106456. https://doi.org/10.1016/j.fuproc.2020.106456

Wang, J., Li, W., Ciais, P., Li, L. Z. X., Chang, J., Goll, D., Gasser, T., Huang, X., Devaraju, N., & Boucher, O. (2021). Global cooling induced by biophysical effects of bioenergy crop cultivation. Nature Communications, 12(1), Article 1. https://doi.org/10.1038/s41467-021-27520-0

Wu, S., Wang, Q., Cui, D., Sun, H., Yin, H., Xu, F., & Wang, Z. (2023). Evaluation of fuel properties and combustion behaviour of hydrochar derived from hydrothermal carbonisation of agricultural wastes. Journal of the Energy Institute, 108, 101209. https://doi.org/10.1016/j.joei.2023.101209

Youn, H. S., Kim, S. J., Kim, G. H., & Um, B. H. (2023). Enhancing the characteristics of hydrochar via hydrothermal carbonization of Korean native kenaf: The effect of ethanol solvent concentration as co-solvent and reaction temperature. Fuel, 331, 125738. https://doi.org/10.1016/j.fuel.2022.125738

Yu, Y., Guo, Y., Wang, G., El-Kassaby, Y. A., & Sokhansanj, S. (2022). Hydrothermal carbonization of waste ginkgo leaf residues for solid biofuel production: Hydrochar characterization and its pelletization. Fuel, 324, 124341. https://doi.org/10.1016/j.fuel.2022.124341

Zhang, B., Heidari, M., Regmi, B., Salaudeen, S., Arku, P., Thimmannagari, M., & Dutta, A. (2018). Hydrothermal Carbonization of Fruit Wastes: A Promising Technique for Generating Hydrochar. Energies, 11(8), Article 8. https://doi.org/10.3390/en11082022

Downloads

Published

21-03-2024

How to Cite

[1]
M. A. Islam, I. Jerin, M. A. Islam, P. P. Das, Z. Liu, and B. Hameed, “PRODUCTION AND CHARACTERIZATION OF HYDROTHERMALLY PROCESSRD SOLID BIOENERGY FROM AN INVASIVE SPECIES”, Khulna Univ. Stud., Mar. 2024.

Issue

Section

Life Science

Similar Articles

1 2 3 4 5 6 7 8 9 10 > >> 

You may also start an advanced similarity search for this article.

Most read articles by the same author(s)