Pharmacological Investigation of Anti-coagulant, Anti-hyperglycaemic, and Anti-hyperlipidemic Potential of Ethanol Extract of Amomum subulatum Seeds

Authors

  • Md. Anisuzzman Pharmacy Discipline, Khulna University, Khulna – 9208, Bangladesh
  • Sanzida Zahan Mou Pharmacy Discipline, Khulna University, Khulna – 9208, Bangladesh
  • Asaduzzaman Mollah Sylhet Agricultural University, Bangladesh
  • Fahima Akter Sylhet Agricultural University, Bangladesh
  • Md. Monirul Islam Pharmacy Discipline, Khulna University, Khulna – 9208, Bangladesh
  • Nazmul Hasan Zilani Jeshore University of Science and Technology, Bangladesh
  • Toufiq Ejaj Khan Pharmacy Discipline, Khulna University, Khulna – 9208, Bangladesh

DOI:

https://doi.org/10.53808/KUS.2024.21.02.1219-ls

Keywords:

Amomum subulatum Ethanol extract Anti-coagulant Anti-hyperglycaemic Anti-hyperlipidemic activity

Abstract

Amomum subulatum, often known as black cardamom (Zingiberaceae), is used in traditional medicine to reduce the risk of diabetes, stroke, heart disease, and other conditions. The present work was undertaken to evaluate the effects of ethanol extract of Amomum subulatum seeds on blood plasma clotting time, glucose concentration levels, percentage of glucose diffusion, and lipid profile such as serum concentrations of bad cholesterol e.g. low-density lipoprotein (LDL), triglycerides (TG), and cholesterol parameters.  Herein, the in vitro anticoagulant activity of the extract was assessed through a prothrombin time (PT) test on blood plasma, antihyperlipidemic activity in vivo was assessed using the high-fat diet overload test on Swiss-albino mice, and antihyperglycemic potential was evaluated through in-vivo oral glucose tolerance test (OGTT) and in-vitro glucose diffusion assay. In comparison to hyperlipidemic mice, the results demonstrated that 4 % ethanol extract combined with a dietary supplement decreased the levels of low-density lipoprotein, triglycerides, and cholesterol. When compared to the standard activity of warfarin (5 mg/ml), a prothrombin time (PT) of roughly 7 minutes suggested that Amomum subulatum (15 mg/ml) was acting as an anticoagulant agent. The extract at 500 mg/ml significantly inhibited the diffusion of glucose through a semi-permeable barrier and, at 500 mg/kg dose significantly decreased blood glucose levels in diabetic mice (7.63±0.15, 7.5 ±0.12, and 5.03 ±0.08 mM/L at 30, 90, and 150 minutes, respectively). Phytochemical screening revealed the presence of phenolic compounds, flavonoids, alkaloids, tannins, etc. in the ethanol extract. Considering the results of this investigation, Amomum subulatum has potent anticoagulant, antihyperglycemic, and antihyperlipidemic effects that make it useful for treating cardiac problems and diabetes.

 

 

Downloads

Download data is not yet available.

References

Balunas, M.J., & Kinghorn, A.D. (2005). Drug discovery from medicinal plants. Life Sciences, 22, 78(5), 431-41. https://doi: 10.1016/j.lfs.2005.09.012

Grover, J.K., Yadav, S., & Vats, V. (2002). Medicinal plants of India with antidiabetic potential. Journal of Ethnopharmacology, 81(1), 81-100. https://doi: 10.1016/s0378-8741(02)00059-4

Leitzmann, C. (2016). Characteristics and health benefits of phytochemicals. Complementary Medicine Research, 23(2), 69-74. https://doi: 10.1159/000444063

Bisht, V.K., Negi J.S., Bhandari, A.K., & Sundriyal, R.C. (2011). Amomum subulatum Roxb.: Traditional, biochemical, and biological activities - An overview. African Journal of Agricultural Research, 6(24), 5386-5390 https://doi: 10.5897/AJAR11.745

Dhakal, R., Dihingia, A., Ahmed, R.S., Gupta, D.D., Sahu, R.K., Dutta, P., Bharali, P., Manna, P., Sastry, G.N., & Kalita, J. (2022). Prophylactic and therapeutic potential of active phytoconstituents from Amomum subulatum roxb. Food Frontiers, 4 (1), 60-84. https://doi: 10.1002/fft2.184

Bhandari, A.K., Bisht, V.K., Negi, J.S., & Baunthiyal, M. (2013). 1, 8-Cineole: A predominant component in the essential oil of large cardamom (Amomum subulatum Roxb.). Journal of Medicinal Plants Research, 7(26), 1957-1960. https://doi: 10.5897/JMPR2013.5131

Gautam, N., Bhattarai, R.R., Khanal, B.K. S., & Oli, P. (2016). Technology, chemistry, and bioactive properties of large cardamom (Amomum subulatum Roxb.): An overview. International Journal of Applied Sciences and Biotechnology, 4(2), 139-149. https://doi: 10.3126/ijasbt.v4i2.15104

Dilworth, L.; Facey, A.; & Omoruyi, F. (2021). Diabetes mellitus and its metabolic complications: The role of adipose tissues. International Journal of Molecular Sciences, 22, 7644. https://doi.org/10.3390/ijms22147644

Lloyd, A., Sawyer, W., & Hopkinson, P. (2001). Impact of long-term complications on quality of life in patients with type 2 diabetes not using insulin. Value Health, 4(5), 392-400. https://doi: 10.1046/j.1524-4733.2001. 45029.x

Duinkerken, E.V., Snoek, F.J., & Wit, M.D. (2020). The cognitive and psychological effects of living with type 1 diabetes: a narrative review. Diabetic Medicine, 37(4), 555-563. https://doi: 10.1111/dme.14216

Ansarullah, Jadeja, R.N., Thounaojam, M.C., Patel, V., Devkar, R.V., & Ramachandran, A.V. (2009). Antihyperlipidemic potential of a polyherbal preparation on triton WR 1339 (tyloxapol) induced hyperlipidemia: A comparison with lovastatin. International Journal of Green Pharmacy, 3, 119-124. https://doi.org/10.22377/ijgp.v3i2.67

Adhyapak, M.S., & Kachole, M.S. (2016). Investigation of adverse effects of interactions between herbal drugs and natural blood clotting mechanism. Journal of Thrombosis and Thrombolysis, 41(4), 644-7. https://doi: 10.1007/s11239-015-1269-4

Orfao, S.C., Jank, G., Mottaghy, K., Walcher, S., & Zerz, E. (2008). Qualitative properties, and stabilizability of a model for blood thrombin formation. Journal of Mathematical Analysis and Applications, 346(1), 218-226. https://doi: 10.1016/j.jmaa.2008.05.060

Fatehi-Hassanabad, Z., Gholamnezhad, Z., Jafarzadeh, M., & Fatehi, M. (2005). The anti-inflammatory effects of aqueous extract of ginger root in diabetic mice. Daru, 13, 70-73.

Sotoudeh, R., Hajzadeh, M-a-r., Gholamnezhad, Z., & Aghaee, A. (2019). The anti-diabetic and antioxidant effects of a combination of Commiphora mukul, Commiphora myrrha, and Terminalia chebula in diabetic rats. Avicenna Journal of Phytomedicine, 9(5), 454-464.

Al-Saadi, N. (2011). In vitro study of the anticoagulant activity of some plant extracts. Indian Journal of Applied Research, 3, 120-122. https://doi: 10.20959/wjpps20185-11492

Zhu, F. (2018). Chemical and biological properties of feijoa (Acca sellowiana). Trends in Food Science and Technology, 81, 121-131. https://doi: 10.1016/j.tifs.2018.09.008

Guideline OECD. (2001). “Acute oral toxicity up and-down procedure,” in OECD guidelines for the testing of chemicals. Paris, OECD: Organization for Economic Cooperation and Development. 425, 27. https://doi: 10.1787/9789264071049-en

David, J., Afolabi, E., Olotu, P., Ojerinde, S., Agwom, F., & Ajima, U. (2017). Phytochemical analysis, antidiabetic, and toxicity studies of the methanolic leaf extract of Detarium microcarpum guill and perr in Wistar albino rats. Journal of Chemical and Pharmaceutical Research, 9(11), 55-60.

Zerkani, H., Zekri, N., Tagnaout, I., Fadili, K., Amalich, S., Elazzouzi, H., Bouhrim, M., & Touria, Z. (2022). Phytochemical analysis and antioxidant activity of twigs and leaves extracts of Tertraclinis articulata (Vahl) masters. Research Square, 11, 1-21. https://doi: 10.21203/rs.3.rs-1912977/v1

Koffi, N., Beugré, K., Guédé, N.Z., Dossahoua, T., & Laurent, A.A. (2009). Screening phytochimique de quelques plantes médicinales ivoiriennes utilisées en pays Krobou (Agboville, Côte-d’Ivoire) Koffi. Sciences & Nature, 6(1), 1-15.

Alarcon-Aguilara, F.J., Roman-Ramos, R.S., Perez-Gutierrez, S.A., Aguilar-Contreras, A., Contreras-Weber, C.C., & Flores-Saenz, J.L. (1998). Study of the anti-hyperglycemic effect of plants used as antidiabetics. Journal of Ethnopharmacology, 61(2), 101-110. https://doi: 10.1016/s0378-8741(98)00020-8

Loew, D., & Kaszkin, M. (2002). Approaching the problem of bioequivalence of herbal medicinal products. Phytotherapy Research, 16(8), 705-711. https://doi: 10.1002/ptr.1248

Azwanida, N.N. (2015). A review of the extraction methods used in medicinal plants, principle, strength, and limitation. Medicinal and Aromatic Plants, 4, 196. https://doi:10.4172/2167-0412.1000196

Sofowara, E.A. (1982). Medicinal plants and traditional medicine in Africa. John Wiley and Sons Limited, New York. 2(3), 365-372.

Shewamene, Z., Abdelwuhab, M. & Birhanu, Z. (2015). Methanolic leaf extract of Otostegia integrifolia Benth reduces blood glucose levels in diabetic, glucose-loaded, and normal rodents. BMC complementary and alternative medicine, 7, 15, 19. https://doi.org/10.1186/s12906-015-0535-5

Colman, R.W., Hirsh, J., & Marder, V.J. (1994). Haemostasis and thrombosis. Basic Principles and Clinical Practice, Lippincott Company, J.B. 759-762.

Joy, K.L., & Kuttan, R.J. (1999). Antidiabetic activity of Picororrhiza kurria extract. Journal of Ethnopharmacology, 1, 67(2), 143-8. https://doi: 10.1016/s0378-8741(98)00243-8

Asgharpour, F., Pouramir, M., & Moghadamnia, A.A. (2012). Evaluation of viscosity of traditional medicinal antihyperglycemic plant and relationship with glucose diffusion in vitro. Journal of Medicinal Plants, 11(41), 166-176.

Mohd, N.H.M., Othman, F., Tohit, E.R.M., & Noor, S.M. Medicinal herbals with antiplatelet properties benefit in coronary atherothrombotic diseases. Thrombosis. 2016, 5952910. https://doi: 10.1155/2016/5952910

Yazdanparast, R., & Shahriyary, L. (2008). Comparative effects of Artemisia dracunculus, Satureja hortensis, and Origanum majorana on inhibition of blood platelet adhesion, aggregation, and secretion. Vascular Pharmacology, 48(1), 32-7. https://doi: 10.1016/j.vph.2007.11.003

El-Haouari, M., & Rosado, J.A. (2016). Medicinal plants with antiplatelet activity. Phytotherapy Research, 30, 1059–1071. https://doi: 10.1002/ptr.5619

Singh, S., Bansal, A., Singh, V., Chopra, T., & Poddar, J. (2022). Flavonoids, alkaloids, and terpenoids: a new hope for the treatment of diabetes mellitus. Journal of Diabetes and Metabolic Disorders, 8, 21(1), 941-950. https://doi: 10.1007/s40200-021-00943-8

Sattar, N.A., Hussain F., Iqbal, T., Sheikh, M.A. (2012). Determination of in-vitro antidiabetic effects of Zingiber officinale Roscoe. Brazilian Journal of Pharmaceutical Sciences, 48, 4.

Deka, H., Choudhury, A., & Dey, B.K. (2022). An overview of plant-derived phenolic compounds and their role in the treatment and management of diabetes. Journal of Pharmacopuncture, 30, 25(3), 199-208. https://doi: 10.3831/KPI.2022.25.3.199

Mathew, A.J. (2020). Effect of combination of aqueous leaf extracts of Psidium guajava linn and Moringa oleifera lam on diabetes mellitus. International Journal of Pharmacy and Pharmaceutical Sciences, 12(7), 79-82. https://doi: 10.22159/ijpps.2020v12i7.36823

Wickramaratne, M.N., Punchihewa, J.C., & Wickramaratne, D.B.M. (2016). In-vitro alpha-amylase inhibitory activity of the leaf extracts of Adenanthera pavonina. BMC complementary and alternative medicine, 16, 466-75. https://doi: 10.1186/s12906-016-1452-y

Alam, S., Dhar, A., Hasan, M., Richi, F.T., Emon, N.U., Aziz, M.A., Mamun, A.A., Chowdhury, M.N.R., Hossain, M.J., Kim, J.K., Kim, B., Hasib, M.S., Zihad, S.M.N.K., Haque, M.R., Mohamed, I.N., & Rashid, M.A. (2022). Antidiabetic potential of commonly available fruit plants in Bangladesh: Updates on prospective phytochemicals and their reported MoAs. Molecules, 8, 27(24), 8709. https://doi: 10.3390/molecules27248709

Gallagher, A., Flatt, P., Duffy, G., & Abdel-Wahab, Y.H. (2003). The effects of traditional antidiabetic plants on in vitro glucose diffusion. Nutrition Research, 23, 413-424. https://doi: 10.1016/S0271-5317(02)00533-X

Kim, E.A., Yang, J.H., Byeon, E.H., Kim, W., Kang, D., Han, J., Hong, S.G., Kim, D.R., Park, S.J., Huh, J.W., Cheong, H., Yun, S.P., & Lee, D.K. (2021). Anti-obesity effect of pine needle extract on high-fat diet-induced obese mice. Plants, 21; 10(5), 837. https://doi: 10.3390/plants10050837

Jawed, A., Singh, G., Kohli, S., Sumera, A., Haque, S., Prasad, R., & Paul, D. (2019). Therapeutic role of lipases and lipase inhibitors derived from natural resources for remedies against metabolic disorders and lifestyle diseases. South African Journal of Botany, 120, 25-32. https://doi: 10.1016/j.sajb.2018.04.004

Sidorova, Y., Shipelin, V., Mazo, V., Zorin, S., Petrov, N., & Kochetkova, A. (2017). Hypoglycemic and hypolipidemic effect of Vaccinium myrtillus L. leaf and Phaseolus vulgaris L. seed coat extracts in diabetic rats. Nutrition, 41, 107-112. https://doi: 10.1016/j.nut.2017.04.010

Bouhrim, M., Daoudi, N.E., Ouassou, H., Benoutman, A., Loukili, E.H., Ziyyat, A., Mekhfi, H., Legssyer, A., Aziz, M., & Bnouham, M. (2020). Phenolic content and antioxidant, antihyperlipidemic, and antidiabetogenic effects of Opuntia dillenii seed oil. Scientific World Journal, 2020, 5717052. https://doi: 10.1155/2020/5717052

Bekkouch, O., Harnafi, M., Touiss, I., Khatib, S., Harnafi, H., Alem, C., & Amrani, S. (2019). In vitro antioxidant and in vivo lipid-lowering properties of Zingiber officinale crude aqueous extract and methanolic fraction: a follow-up study. Evidence-Based Complementary and Alternative Medicine, 2019, 9734390. https://doi: 10.1155/2019/9734390

Surya, S., Arun, K.R., Carla, B., & Sunil, C. (2017). Antihyperlipidemic effect of Ficus dalhousiae miq. Stem bark on triton WR-1339 and high fat diet-induced hyperlipidemic rats. Bulletin of Faculty of Pharmacy, Cairo University, 55, 73-77. https://doi: 10.1016/j.bfopcu.2016.10.003

Downloads

Published

28-08-2024

How to Cite

[1]
Md. Anisuzzman, “Pharmacological Investigation of Anti-coagulant, Anti-hyperglycaemic, and Anti-hyperlipidemic Potential of Ethanol Extract of Amomum subulatum Seeds ”, Khulna Univ. Stud., Aug. 2024.

Issue

Section

Life Science

Similar Articles

1 2 3 4 5 6 7 > >> 

You may also start an advanced similarity search for this article.