ANTIBACTERIAL AND CYTOTOXIC ACTIVITIES OF Carica papaya L. (PAPAYA) SEEDS
DOI:
https://doi.org/10.53808/KUS.2018.15.1and2.1807-LKeywords:
Antibacterial activity, brine shrimp lethality bioassay, MIC, MBC, Carica papayaAbstract
The crude ethanolic and methanolic extracts of Carica papaya L. seeds were investigated to evaluate their antibacterial and cytotoxic potentialities. The average zone of inhibition for ethanolic extract of C. papaya seed ranged 6.25 – 9.75 mm for 500 μg/disc and 8 -14.75 mm for 1000 μg/disc. With methanolic extract the zone of inhibition ranged 7.75 – 8.50 mm for 500 μg/disc and 11.25 – 14.50 mm for 1000 μg/disc. Again from minimum inhibitory concentration (MIC) assay (Resazurin assay), the MIC was found to be 0.625 mg/ml for ethanol and 0.312 mg/ml for methanol extract. The minimum bactericidal concentration (MBC) was found to be 1.25 mg/ml for ethanol and 0.625 mg/ml for methanol extract. Compared to vincristine sulphate (with LC50 of 1.20 μg/ml) both ethanolic and methanolic extract of C. papaya seeds showed toxicity higher than 100 μg/ml. The study affirmed potential antibacterial property of C. papaya seed extracts with mild cytotoxic activity. These findings could be correlated with the traditional medicinal uses of papaya seeds and showed the rationale for further investigation for screening out the possible bioactive constituents.
Downloads
References
Adeneye, A. A., Olagunju, J. A., Banjo, A. F., Abdul, S. F., Sanusi, O. A., Sanni, O. O., ..... & Shonoiki, O. E. (2009). The aqueous seed extract of Carica papaya Linn. Prevents carbon tetrachloride induced hepatotoxicity in rats. International Journal of Applied Research in Natural Products, 2(2), 19-32.
Anibijuwon, I. I., & Udeze, A. O. (2009). Antimicrobial Activity of Carica Papaya (Pawpaw Leaf) on Some Pathogenic Organisms of Clinical Origin from SouthWestern Nigeria. Ethnobotanical Leaflets, 13, 850–64.
Aravind, G., Bhowmik, D., Duraivel, S., & Harish, G. (2013). Traditional and Medicinal Uses of Carica papaya. Journal of Medicinal Plants Studies, 1(1), 7–15.
Ayoola, G. A., Coker, H. A. B., Adesegun, S. A., Adepoju-bello, A. A., ..... & Atangbayila, T. O. (2008). Phytochemical Screening and Antioxidant Activities of Some Selected Medicinal Plants Used for Malaria Therapy in Southwestern Nigeria. Tropical Journal of Pharmaceutical Research, 7(3), 1019–1024.
Bauer, A. (1996). Antibiotic susceptibility testing by a standardized single disc method. American Journal. of Clincal Pathology, 45, 149-158.
Cowan, M. M. (1999) Plant products as antimicrobial agents. Clinical Microbiology Reviews, 12(4), 564-582.
Devi, S. V., & Prakash, N. K. U. (2011). A Study on Phytochemistry , Antimicrobial Antifungal and Antioxidant Properties of Male Flower of Carica Papaya L . International Journal of Applied Biology, 2(1), 20–23.
Galuppo, M., Nicola, G. R. D., Iori, R., Dell'Utri, P., Bramanti, P., & Mazzon, E. (2013). Antibacterial activity of glucomoringin bioactivated with myrosinase against two important pathogens affecting the health of long-term patients in hospitals. Molecules. 18(11), 14340-14348.
Garrod, L. P., Lambert, H. P. & O’Gray, F. (1995). Antibiotics and Chemotherapy, 4th Ed, Churchill, Livingstons, Edinburgh, London and New York. pp.501-512.
González-Lamothe, R., Mitchell, G., Gattuso, M., Diarra, M. S., Malouin, F., & Bouarab, K. (2009) Plant antimicrobial agents and their effects on plant and human pathogens. International Journal of Molecular Sciences, 10(8), 3400-3419.
Hughey, V. L., & Johnson, E. A. (1987). Antimicrobial activity of lysozyme against bacteria involved in food spoilage and food-borne disease. Applied and Environmental Microbiology, 53(9), 2165-2170.
Juárez-rojop, I. E., Díaz-zagoya, J. C., Ble-castillo, J. L., Miranda-osorio, P. H., ..... & Bermúdez-ocaña, D. Y. (2012). Hypoglycemic effect of Carica papaya leaves in streptozotocin-induced diabetic rats. BMC Complementary and
Alternative Medicine, 12(1), 236.
Kafaru, E. (1994). Immense Help from Natives Workshop, 1st Ed, Elizabeth Kafaru, Lagos, Nigeria. pp.11-14.
Khor, E. S., & Wong, N. K. (2014). Potential antioxidant and cytotoxic properties of secondary metabolite extracts from carica papaya fruits and seeds. International Journal of Pharmacy and Pharmaceutical Sciences, 6 (7), 220-224.
Kovendan, K., Murugan, K., Panneerselvam, C., Aarthi, N., Kumar, P. M., Subramaniam, J., & Amerasan, D. (2012). Antimalarial activity of Carica papaya ( Family : Caricaceae ) leaf extract against Plasmodium falciparum. Asian Pacific Journal of Tropical Disease, 2, S306–S311.
Krishna, K. L., Paridhavi, M., & Patel, J. A. (2008). Review on nutritional, medicinal and pharmacological properties of Papaya (Carica papaya Linn.). Natural Product Radiance, 7(4), 364-373.
Meyer, B. N., Ferrigni, N. R., Putnam, J. E., Jacobsen, L. B., Nichols, D. J., & McLaughlin, J. L. (1982). Brine shrimp: a convenient general bioassay for active plant constituents. Planta medica, 45(05), 31-34.
Michael, A. S., Thompson, C. G., & Abramovitz, M. (1956). Artemia salina as a Test Organism for Bioassay. Science (New York, NY), 123(3194), 464.
Nayak, B. S., Ramdeen, R., Adogwa, A., Ramsubhag, A., & Marshall, J. R. (2012). Woundhealing potential of an ethanol extract of Carica papaya (Caricaceae) seeds. International Wound Journal, 9(6), 650–655.
Nirosha, N., & Mangalanayaki, R. (2013). Antibacterial Activity of Leaves and Stem Extract of Carica papaya L . International Journal of Advances in Pharmacy, Biology and Chemistry, 2(3), 473–476.
Osato, J. A., Santiago, L. A., Remo, G. M., Cuadra, M. S., & Mori, A. (1993). Antimicrobial and antioxidant activities of unripe papaya. Life sciences, 53(17), 1383-1389.
Otsuki, N., Dang, N. H., Kumagai, E., Kondo, A., Iwata, S., & Morimoto, C. (2010). Aqueous extract of Carica papaya leaves exhibits anti-tumor activity and immunomodulatory effects. Journal of Ethnopharmacology, 127, 760–767.
Persoone, G., Sorgeloos, P., & Roels, O. (1980). The brine shrimp Artemia; proceedings of an international Symposium, Corpus Christi, Texas, USA.
Sarker, S. D., Nahar, L., & Kumarasamy, Y. (2007). Microtitre plate‐ based antibacterial assay incorporating resazurin as an indicator of cell growth, and its application in the in vitro antibacterial screening of phytochemicals. Methods, 42, 321–324.
Sarker, S. D., Nahar, L., Nurunnabi, T. R., Rahman, S. M. M., Sohrab, M. H., Billah, & M. M., Sharples, G. P. (2017). A mini review on oxysporone. Trends Phytochem Res, 1, 55–60.
Sofrata, A., Santangelo, E. M., Azeem, M., Borg-Karlson, A. K., Gustafsson, A., & Pütsep, K. (2011). Benzyl isothiocyanate, a major component from the roots of Salvadora persica is highly active against Gram-negative bacteria. PLoS One, 6(8), e23045.
Tona, L., Kambu, K., Ngimbi, N., Cimanga, K., & Vlietinck, A. J. (1998). Antiamoebic and phytochemical screening of some Congolese medicinal plants. Journal of Ethnopharmacology, 61, 57–65.
Udegbunam, R. I., Ode, J. O., & Ekwere, M. R. (2014). Anti-fertility effects of Carica papaya ( Pawpaw ) Linn . Methanol root extract in male Wistar rats. Arabian journal of chemistry. http://dx.doi.org/10.1016/j.arabjc.2014.10.018.
Waksman,S. A., & Reilly, H. C. (1945). Agar-streak method for assaying antibiotic substances. Industrial & Engineering Chemistry Analytical Edition, 17(9), 556-558.
Wilkinson, J. M. (2006). Methods for testing the antimicrobial activity of extracts. Modern Phytomedicine. Turning Medicinal Plants into Drugs, 157-171.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 Khulna University Studies
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.