BLACK HOLES: THE ULTIMATE FATE OF THE COLLAPSING STARS
DOI:
https://doi.org/10.53808/KUS.2007.8.1.0637-PSKeywords:
General relativity, Schwarzschild metric, event horizon, gravitational collapse, singularity, black holeAbstract
Black holes are among the most intriguing objects in modern physics (Alwis, 1992). It is one of the most fascinating objects in the universe, and it can be understood on the basis of Einstein’s general theory of relativity. Black hole is nothing but the ultimate destiny of massive stars which undergo a dramatic gravitational collapse (Horowitz and Teukolsky, 1999). In the present study, we investigate the nature of the collapsing stars, the observational evidence for black holes and some recent developments in the black hole physics.
Downloads
References
Alwis, S.P.de. 1992. Physics of Black Holes. Physics Review, D 46: 5429.
Anon. 2006a. Black Hole. Wikipedia, the free online encyclopedia. Internet Explorer, Retrieved on 25-03-2006, URL: <http://en.wikipedia.org/wiki/Black_hole>.
Anon. 2006b. Hidden black holes come into view. Internet Explorer, Retrieved on 25-03-2006, URL: <http://www.physicsweb.org>.
Anon. 2006c. Second black hole found at the centre of our Galaxy. Internet Explorer, Retrieved on 25-03-2006, URL: <http://www.nature.com>.
Anon. 2006d. 404 error, site closed down and moved. Internet Explorer, Retrieved on 25-03-2006, URL: <http://en.wikipedia.org/wiki/black_hole>
Chandrasekhar, S. 1931. The Maximum Mass of Ideal White Dwarfs. Astrophysics Journal, p. 74, 81.
Eddington, A.S. 1935. Minutes of a Meeting of the Royal Astronomical Society. Observatory, p. 58, 37.
Horowitz, G.T. and Teukolsky, S.A. 1999. Black Holes. To appear in the American Physical Society Centenary issue of Reviews of Modern Physics, Internet Explorer, Retrieved on 25 March, 2006, URL: <http://www.arXiv.org>
Islam, J.N. 1992. An Introduction to Mathematical Cosmology. Cambridge University Press, Cambridge, pp. 161-169.
Iyer, B.R.; Mukunda, N. and Vishveshwara, C.V. 1988. Gravitation, Gauge Theories and the Early Universe. Kluwer Academic Publishers, The Netherlands, pp. 31-42.
Kerr, R.P. 1963. Gravitational field of a spinning mass as an example of algebraically special metrices. Phys. Rev. Lett., pp. 11, 237.
Malik, T. 2006. Massive Black Hole. Stumps Researchers. Internet explorer, Retrieved on 25-03-2006, URL: <http://www.space.com>
Misner, C.W.; Thorne, K.S. and Wheeler, J.A. 1973. Gravitation. Freeman, San Francisco, California. pp. 817-885.
Newman, E.T.; Couch, E.; Chinnapared, K.; Exton, A.; Prokash, A. and Torrence, R. 1965. Metric of a Rotating, Charged Mass. Journal of Mathematical Physics, 6: 918.
Oppenheimer, J.R. and Snyder, H. 1939. On continued gravitational contraction. Physics Review, 56: 455.
Peratt, A.L. 1993. Plasma Astrophysics and Cosmology. The Second IEEE International Workshop, Princeton, New Jersey, Internet Explorer, Retrieved on 25-03-2006, URL: http:
Schwarzschild, K. 1916. On the Gravitational field of a Point Mass in Einstein’s Theory. Situngsber. Dtsch. Akad. Wiss. Berlin, Kl. Math. Phys. Tech., pp. 189 (in Germany).
Shapiro, S.L. and Teukolsky, S.A. 1983. Black Holes, White Dwarfs and Neutron Stars, the Physics of cColunefm.ompact objects. John Wiley and Sons Inc., U.S.A., pp. 1-6.
Wheeler, J.A. 1968. Our Universe: The Known and the Unknown. American Scientists, pp. 56, 1.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 Khulna University Studies

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.