• Mst. Rima Khatun Biotechnology and Genetic Engineering Discipline, Khulna University, Khulna 9208, Bangladesh
  • Nadia Islam Luna Biotechnology and Genetic Engineering Discipline, Khulna University, Khulna 9208, Bangladesh
  • Sharmin Akter Biotechnology and Genetic Engineering Discipline, Khulna University, Khulna 9208, Bangladesh
  • M Rabiul Islam Biotechnology and Genetic Engineering Discipline, Khulna University, Khulna 9208, Bangladesh and Forensic DNA Lab., Khulna Medical College Hospital, Khulna 9000, Bangladesh
  • Sheikh Julfikar Hossain Biotechnology and Genetic Engineering Discipline, Khulna University, Khulna 9208, Bangladesh



Antioxidant, mangrove fruits, polyphenols, silver nanoparticles, the Sundarbans


Fruits provide numerous health-promoting polyphenols and antioxidants. The Sundarbans mangrove forest of Bangladesh produces various fruits, and off them ten to twelve are known to be consumed or used as an ingredient in food preparations. These fruits were used in this study to evaluate the total polyphenols (TPH) contents following the method of Folin-Ciocalteu’s; and the antioxidant activity by measuring 2,2-diphenyl-1-picrylhydrazyl (DPPH) free radicals scavenging, reducing power and total antioxidant capacity. Additionally, capacity of silver nanoparticles (AgNPs) biosynthesis of the fruits was determined spectrophotometrically. Sonneratia apetala fruit showed the highest TPH content (45.7 mg of gallic acid equivalent (GAE)/g powder). The fruit also showed the largest antioxidant activity attributed to the DPPH free radicals scavenging, reducing power, and total antioxidant capacity. Additionally, S. apetala fruit showed the highest capacity in the AgNPs biosynthesis (OD, 0.41; 10 mg powder/mL). Avicennia officinalis, Ceriops decandra, Heritiera fomes, and S. apetala fruits showed scavenging of 50% DPPH free radicals at 81, 34.7, 61.2, and 33.5 µg powder/mL, respectively. Contents of total polyphenols in these fruits displayed strong positive correlations with reducing power (r2 = 0.97), total antioxidant capacity (r2 = 0.85) and scavenging DPPH free radicals (r2 = 0.85) whereas that for the AgNPs biosynthesis capacity was small (r2 = 0.32).  Thus, the aqueous extract of S. apetala fruit is the most potential in antioxidant activity and biosynthesis of AgNPs.


Download data is not yet available.


Hossain, S. J., Basar, M. H., Rokeya, B., Arif, K. M. T., Sultana, M. S., & Rahman, M. H. (2013). Evaluation of antioxidant, antidiabetic and antibacterial activities of the fruit of Sonneratia apetala (Buch.-Ham.). Oriental Pharmacy and Experimental Medicine, 13(2), 95–102.

Abeywickrama, W., & Jayasooriya, M. (2011). Formulation and quality evaluation of cordial based on Kirala (Sonneratia Caseolaris) fruit. Tropical Agricultural Research and Extension, 13(1), 16-18.

Ahmed, S., Ahmad, M., Swami, B. L., & Ikram, S. (2016). A review on plants extract mediated synthesis of silver nanoparticles for antimicrobial applications: A green expertise. Journal of Advanced Research, 7(1), 17–28.

Alam, H. I., Biswas, A., Hosen, M. Z., Islam, M. R., & Hossain, S. J. (2021). Antioxidant properties and potentiality of silver nanoparticles biosynthesis of thirty-five edible Bangladeshi fruits. Bangladesh Journal of Botany, 50(3), 445–451.

Blois, M. S. (1958). Antioxidant determinations by the use of a stable free radical. Nature, 181(4617), 1199–1200.

Brown, B. (2006). Cooking with mangroves: 36 Indonesian mangrove recipes. Mangrove Action Project- Indonesia, pp. 1-44.

Chen, L., Zan, Q., Li, M., Shen, J., & Liao, W. (2009). Litter dynamics and forest structure of the introduced Sonneratia caseolaris mangrove forest in Shenzhen, China. Estuarine, Coastal and Shelf Science, 85(2), 241–246.

Daglia, M. (2012). Polyphenols as antimicrobial agents. Current Opinion in Biotechnology, 23(2), 174–181.

FAO. 2003. FAO’s global estimate of mangroves. Accessed on 17 November 2014.

Hosen, M. Z., Biswas, A., Islam, M. R., Nazrul, M., Bhuiyan, I., & Hossain, S. J. (2020). Comparison of physicochemical and antioxidant properties of edible fruits in the Sundarbans’ mangrove forest, Bangladesh. Bangladesh Journal of Botany, 49(3), 671–678.

Hossain, S. J., Iftekharuzzaman, M., Haque, M. A., Saha, B., Moniruzzaman, M., Rahman, M. M., & Hossain, H. (2016). Nutrient compositions, antioxidant activity, and common phenolics of Sonneratia apetala (Buch.-Ham.) fruit. International Journal of Food Properties, 19(5), 1080–1092.

Hossain, S. J., Islam, M. R., Pervin, T., Iftekharuzzaman, M., Hamdi, O., Mubassara, S., Saifuzzaman, M., & Shilpi, J. A. (2017). Antibacterial, anti-diarrhoeal, analgesic, cytotoxic activities, and GC-MS profiling of Sonneratia apetala (Buch.-Ham.) seed. Preventive Nutrition and Food Science, 22(3), 157–165.

Hossain, S. J., Kato, H., Aoshima, H., Yokoyama, T., Yamada, M., & Hara, Y. (2002). Polyphenol-induced inhibition of the response of Na+/Glucose cotransporter expressed in Xenopus oocytes. Journal of Agricultural and Food Chemistry, 50(18), 5215–5219.

Hossain, S. J., Sultana, M. S., Iftekharuzzaman, M., Hossain, S. A., & Taleb, M. A. (2015). Antioxidant potential of common leafy vegetables in Bangladesh. Bangladesh Journal of Botany, 44(1), 51–57.

Hossain, S. J., Tsujiyama, I., Takasugi, M., Islam, M. A., Biswas, R. S., & Aoshima, H. (2008). Total phenolic content, antioxidative, anti-amylase, anti-glucosidase, and antihistamine release activities of Bangladeshi fruits. Food Science and Technology Research, 14(3), 261–268.

Lee, S. H., & Jun, B.-H. (2019). Silver nanoparticles: synthesis and application for nanomedicine. International Journal of Molecular Sciences, 20, 865. doi:10.3390/ijms20040865

Lukman, A. I., Gong, B., Marjo, C. E., Roessner, U., & Harris, A. T. (2011). Facile synthesis, stabilization, and anti-bacterial performance of discrete Ag nanoparticles using Medicago sativa seed exudates. Journal of Colloid and Interface Science, 353(2), 433–444. doi: 10.1016/j.jcis.2010.09.088.

Ough, C. S., & Amerine, M. A. (1988). Methods for analysis of musts and wine. 2nd Edn., Wiley & Sons Inc., New York, USA, pp. 196-221. ISBN: 0471627577 978047 1627579

Oyaizu, M. (1986). Studies on products of browning reaction. Antioxidative activities of products of browning reaction prepared from glucosamine. The Japanese Journal of Nutrition and Dietetics, 44(6), 307–315.

Pandey, K. B., & Rizvi, S. I. (2009). Plant polyphenols as dietary antioxidants in human health and disease. Oxidative Medicine and Cellular Longevity, 2(5), 270–278.

Prieto, P., Pineda, M., & Aguilar, M. (1999). Spectrophotometric quantitation of antioxidant capacity through the formation of a phosphomolybdenum complex: specific application to the determination of vitamin E. Analytical Biochemistry, 269(2), 337–341.

Rastogi, L., & Arunachalam, J. (2011). Sunlight based irradiation strategy for rapid green synthesis of highly stable silver nanoparticles using aqueous garlic (Allium sativum) extract and their antibacterial potential. Material Chemistry and Physics, 129(1-2), 558–563.

Salari-Moghaddam, A., Nouri-Majd, S., Keshteli, A. H., Emami, F., Esmaillzadeh, A., & Adibi, P. (2022). Association between dietary total antioxidant capacity and diet quality in adults. Frontiers in Nutrition, 9, 838752. doi: 10.3389/fnut.2022.838752

Scalbert, A. & Williamson, G. (2000). Dietary intake and bioavailability of polyphenols. The Journal of Nutrition, 130(8), 2073S2085S.

Tran, Q. H., Nguyen, V. Q., & Le, A. T. (2013). Silver nanoparticles: synthesis, properties, toxicology, applications and perspectives. Advances in Natural Sciences: Nanoscience and Nanotechnology, 4(3), 033001.




How to Cite

M. R. . Khatun, N. I. Luna, S. . Akter, M. R. . Islam, and S. J. . Hossain, “ANTIOXIDANT ACTIVITY AND CAPACITY OF SILVER NANOPARTICLES BIOSYNTHESIS OF COMMON FRUITS AQUEOUS EXTRACTS OF THE SUNDARBAN FOREST”, Khulna Univ. Stud., vol. 19, no. 1, pp. 66–73, Jun. 2022.



Life Science

Similar Articles

<< < 1 2 3 4 5 6 > >> 

You may also start an advanced similarity search for this article.

Most read articles by the same author(s)