PROFILING OF ANTIBIOTIC RESISTANT BACTERIA ISOLATED FROM POULTRY LITTER OF COMMERCIAL FARMS IN KHULNA DISTRICT, BANGLADESH
DOI:
https://doi.org/10.53808/KUS.2022.19.02.2244-lsKeywords:
Antibiotic resistance, CLSI, PCR, Sanger sequencingAbstract
Microbial resistance to antibiotics has become a global threat that interferes with the interaction among humans, the environment, and microbes. Our study sought to detect antibiotic-resistant bacteria in light of the growing interest in using antibiotics in the poultry sector. We collected 24 poultry liter samples from 04 different upazilas of Khulna district (Batiaghata, Dumuria, Paikgachha and Koyra). Initially, 09 bacterial isolates were selected and among them, 77.78% bacteria were found gram positive. Subsequently, to characterize these bacteria, a toal of 10 biochemical tests (methyl red test, MacConkey agar test, indole test, catalase test, triple sugar iron test, mannitol salt agar test, oxidase test, Voges-Proskauer test, citrate test and nitrate test) were carried out in this experiment. Moreover, our study also isolated and amplified bacterial DNA for Sanger sequencing and finally disclosed 09 different antibiotic resistant bacterial species, namely Priestia aryabhattai, Bacillus cereus, Priestia megaterium, Lysinibacillus macrolides, Rossellomorea aquimaris, Mammaliicoccus sciuri, Bacillus wiedmannii, Escherichia coli and Citrobacter freundii. Further, disk diffusion assays were performed following CLSI guidelines and it unveiled the susceptibility and resistant properties of isolates against commonly used 08 antibiotics (penicillin 10U, tetracycline 20µg, nitrofuran 300µg, clindamycin 2µg, azithromycin 15µg, quinolones 5µg, tetracycline 30µg and penicillin 30µg) in poultry farms. All of the bacterial isolates were found resistant to at least one of the antibiotics except C. freundii (isolate 9). Most of the isolates (66.67%) were resistant to nitrofuran, whereas all of them were susceptible to penicillin. Lastly, this study also made an effort to understand the evolutionary relationships of the identified species through a phylogenetic tree. Thus, the findings of this study will help farmers and common people to better understand the risk of developing antibiotic-resistant bacteria as a result of excessive antibiotic usage.
Downloads
References
Barriere, S. L. (2015). Clinical, economic and societal impact of antibiotic resistance. Expert Opinion on Pharmacotherapy, 16(2), 151–153. https://doi.org/10.1517/14656566.2015.983077
Bergey, D. H. (1994). Bergey's manual of determinative bacteriology. Lippincott Williams & Wilkins.
Bottone, E. J. (2010). Bacillus cereus, a Volatile Human Pathogen. Clinical Microbiology Reviews, 23(2), 382. https://doi.org/10.1128/CMR.00073-09
Casewell, M., Friis, C., Marco, E., McMullin, P., & Phillips, I. (2003). The European ban on growth-promoting antibiotics and emerging consequences for human and animal health. Journal of Antimicrobial Chemotherapy, 52(2), 159–161. https://doi.org/10.1093/jac/dkg313
Claus, D. (1992). A standardized Gram staining procedure. World Journal of Microbiology and Biotechnology, 8(4), 451–452. https://doi.org/10.1007/BF01198764
Clinical and Laboratory Standards Institute (2006). Performance standards for antimicrobial disk susceptibility tests; Approved standard— 9th ed. CLSI document M2-A9. 26:1. Clinical Laboratory Standards Institute, Wayne, PA.
D, V. der V., C, H., M, V., C, M., S, B., S, W., & F, L. (2022). Genome-Based Characterization of a Plasmid-Associated Micrococcin P1 Biosynthetic Gene Cluster and Virulence Factors in Mammaliicoccus sciuri IMDO-S72. Applied and Environmental Microbiology, 88(4). https://doi.org/10.1128/AEM.02088-21
Dadgostar, P. (2019). Antimicrobial Resistance: Implications and Costs. Infection and Drug Resistance, 12, 3903–3910. https://doi.org/10.2147/IDR.S234610
Franco-Duarte R., Černáková L., Kadam S., Kaushik K.S., Salehi B., Bevilacqua A., Corbo M.R., Antolak H., Dybka-Stępién K., Leszczewicz M., et al (2019). Advances in chemical and biological methods to identify microorganisms—from past to present. Microorganisms. doi: 10.3390/microorganisms7050130
Hasan, M., Hossain, M. K., Rumi, N. A., Rahman, M. S., & Hosen, M. A. (2020). Isolation and characterization of multiple drug-resistant bacteria from the waste of hospital and non-hospital environment. Asian Journal of Medical and Biological Research, 6(3), 460–468. https://doi.org/10.3329/ajmbr.v6i3.49794
Hayes, J. F. (2022). Fighting Back against Antimicrobial Resistance with Comprehensive Policy and Education: A Narrative Review. Antibiotics (Basel, Switzerland), 11(5). https://doi.org/10.3390/antibiotics11050644
Henchion, M., Hayes, M., Mullen, A. M., Fenelon, M., & Tiwari, B. (2017). Future Protein Supply and Demand: Strategies and Factors Influencing a Sustainable Equilibrium. Foods (Basel, Switzerland), 6(7). https://doi.org/10.3390/foods6070053
Kaper, J. B., Nataro, J. P., & Mobley, H. L. T. (2004). Pathogenic Escherichia coli. Nature Reviews Microbiology, 2(2), 123–140. https://doi.org/10.1038/nrmicro818
Kimura, M. (1980). A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. Journal of Molecular Evolution, 16(2), 111–120. https://doi.org/10.1007/BF01731581
Klein, E. Y., Van Boeckel, T. P., Martinez, E. M., Pant, S., Gandra, S., Levin, S. A., Goossens, H., & Laxminarayan, R. (2018). Global increase and geographic convergence in antibiotic consumption between 2000 and 2015. Proceedings of the National Academy of Sciences, 115(15), E3463–E3470. https://doi.org/10.1073/pnas.1717295115
Kumar, S., Stecher, G., & Tamura, K. (2016). MEGA7: Molecular Evolutionary Genetics Analysis Version 7.0 for Bigger Datasets. Molecular Biology and Evolution, 33(7), 1870–1874. https://doi.org/10.1093/molbev/msw054
Landers, T. F., Cohen, B., Wittum, T. E., & Larson, E. L. (2012). A review of antibiotic use in food animals: Perspective, policy, and potential. Public Health Reports (Washington, D.C. : 1974), 127(1), 4–22. https://doi.org/10.1177/003335491212700103
Machuve, D., Nwankwo, E., Mduma, N., & Mbelwa, J. (2022). Poultry diseases diagnostics models using deep learning. Frontiers in Artificial Intelligence (Vol. 5).
McFarland, J. (1907). Nephelometer: an instrument for media used for estimating the number of bacteria in suspensions used for calculating the opsonic index and for vaccines. J Am Med Assoc 14:1176-1178.
Mehdi, Y., Létourneau-Montminy, M.-P., Gaucher, M.-L., Chorfi, Y., Suresh, G., Rouissi, T., Brar, S. K., Côté, C., Ramirez, A. A., & Godbout, S. (2018). Use of antibiotics in broiler production: Global impacts and alternatives. Animal Nutrition, 4(2), 170–178. https://doi.org/10.1016/j.aninu.2018.03.002
Murray, C. J. L., Ikuta, K. S., Sharara, F., Swetschinski, L., Robles Aguilar, G., Gray, A., Han, C., Bisignano, C., Rao, P., Wool, E., Johnson, S. C., Browne, A. J., Chipeta, M. G., Fell, F., Hackett, S., Haines-Woodhouse, G., Kashef Hamadani, B. H., Kumaran, E. A. P., McManigal, B., … Naghavi, M. (2022). Global burden of bacterial antimicrobial resistance in 2019: A systematic analysis. The Lancet, 399(10325), 629–655. https://doi.org/10.1016/S0140-6736(21)02724-0
Podolsky, S. H. (2018). The evolving response to antibiotic resistance (1945–2018). Palgrave Communications, 4(1), 124. https://doi.org/10.1057/s41599-018-0181-x
Pouwels, K. B., Hopkins, S., Llewelyn, M. J., Walker, A. S., McNulty, C. A., & Robotham, J. V. (2019). Duration of antibiotic treatment for common infections in English primary care: Cross sectional analysis and comparison with guidelines. BMJ (Clinical Research Ed.), 364, l440. https://doi.org/10.1136/bmj.l440
Ranjan, K. P., & Ranjan, N. (2013). Citrobacter: An emerging health care associated urinary pathogen. Urology Annals, 5(4), 313.
Reygaert, W. C. (2018). An overview of the antimicrobial resistance mechanisms of bacteria. AIMS Microbiology, 4(3), 482–501. https://doi.org/10.3934/microbiol.2018.3.482
Saitou, N., & Nei, M. (1987). The neighbor-joining method: A new method for reconstructing phylogenetic trees. Molecular Biology and Evolution, 4(4), 406–425. https://doi.org/10.1093/oxfordjournals.molbev.a040454
Schuller, M., Sloots, T. P., James, G. S., Halliday, C. L., Carter, I. W. J. (2010). PCR for Clinical Microbiology Volume 876 || Universal Bacterial Identification by PCR and DNA Sequencing of 16S rRNA Gene. , 10.1007/978-90-481-9039-3(Chapter 28), 209–214. doi:10.1007/978-90-481-9039-3_28
Truong, L., Morash, D., Liu, Y., & King, A. (2019). Food waste in animal feed with a focus on use for broilers. International Journal of Recycling of Organic Waste in Agriculture, 8(4), 417–429. https://doi.org/10.1007/s40093-019-0276-4
Ventola, C. L. (2015). The antibiotic resistance crisis: Part 1: Causes and threats. P & T : A Peer-Reviewed Journal for Formulary Management, 40(4), 277–283.
Weisburg, W. G., Barns, S. M, Pelletier, D. A., Lane, D. J. (1991). "16S ribosomal DNA amplification for phylogenetic study". Journal of Bacteriology. 173 (2): 697–703. doi:10.1128/jb.173.2.697-703.1991
Woo, P. C. Y., Lau, S. K. P., Teng, J. L. L., Tse, H., & Yuen, K. (2008). Then and now: use of 16S rDNA gene sequencing for bacterial identification and discovery of novel bacteria in clinical microbiology laboratories. Clinical Microbiology and Infection, 10(14), 908–934.
World Health Organization. (2021). A report on “Antimicrobial resistant”. Retrieved from https://www.who.int/news-room/fact-sheets/detail/antimicrobial-resistance.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 Khulna University Studies

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.