STAND STRUCTURE AND FINE ROOT PRODUCTION WITH THEIR BENEFACTION TO CARBON STORAGE IN THE SUNDARBANS MANGROVE FOREST

Authors

  • Md. Kamruzzaman Forestry and Wood Technology Discipline, Khulna University, Khulna-9208, Bangladesh
  • Rifat Rahaman Hredoy Forestry and Wood Technology Discipline, Khulna University, Khulna-9208, Bangladesh
  • Md. Minarul Islam Forestry and Wood Technology Discipline, Khulna University, Khulna-9208, Bangladesh

DOI:

https://doi.org/10.53808/KUS.2023.20.02.996-ls

Keywords:

Mangroves;, Stand structures, Biomass carbon, Fine roots, Ingrowth core, Root production.

Abstract

The quantification of fine root production (FRP) and fine root biomass (FRB) in mangrove ecosystem is of utmost importance in gaining insights into ecosystem dynamics. However, these aspects have received limited attention in mangrove forests, primarily due to the considerable time and labor required for accurate assessment. Therefore, our study aims to estimate FRP and FRB stocks in the Sundarbans mangrove forest in Bangladesh, specifically focusing on two distinct saline zones: oligohaline and mesohaline. To accomplish our objectives, we employed sequential soil coring and long-term ingrowth core methods to collect soil samples from 20 study plots, each covering an area of 100 square meters. Additionally, we assessed the forest structure by measuring the tree height and diameter at breast height. Our findings revealed that the mean FRB and FRP across the study area were 12.7 ± 1.1 Mg ha-1 and 2.3 ± 0.1 Mg ha-1 yr-1, respectively. Notably, the oligohaline zone, characterized by lower salinity levels, exhibited higher FRB stocks and FRP compared to the mesohaline zone. Our analysis showed that FRP in the diameter class of 1-2 mm surpassed that of the 0.5-1 mm and ≤0.5 mm classes. In terms of organic carbon, the mean above-ground, below-ground, and total organic carbon were 93.7 ± 18.3, 48.4 ± 7.6, and 142 ± 26 Mg C ha-1, respectively. Through species importance value (Iv) analysis, we identified Excoecaria agallocha as the dominant species in the oligohaline zone, while Sonneratia apetala exhibited the highest Iv value in the mesohaline area. Heritiera fomes emerged as the primary contributor to total organic carbon, particularly in the oligohaline zone, whereas S. apetala contributed the most organic carbon in the mesohaline zone. These findings emphasize the importance of protecting and conserving mangrove ecosystems as valuable contributors to global carbon dynamics due to their higher fine root production and their contribution to carbon stocks.

Downloads

Download data is not yet available.

References

Adame, M. F., Teutli, C., Santini, N. S., Caamal, J. P., Zaldívar-Jiménez, A., Hernández, R., & Herrera-Silveira, J. A. (2014). Root biomass and production of mangroves surrounding a karstic oligotrophic coastal lagoon. Wetlands, 34:479-488.

Adame, M. F., Cherian, S., Reef, R., & Stewart-Koster, B. (2017). Mangrove root biomass and the uncertainty of belowground carbon estimations. Forest Ecology and Management, 403, 52-60.

Ahmed, A., Aziz, A., Khan, A. N. A., Islam, M. N., Iqubal, K. F., Nazma, M., & Islam, M. S. (2011). Tree diversity as affected by salinity in the Sundarbans mangrove forests, Bangladesh. Bangladesh Journal of Botany, 40(2): 197-202.

Ahmed, S., Kamruzzaman, M., Azad, M. S., & Khan, M. N. I. (2021). Fine root biomass and its contribution to the mangrove communities in three saline zones of Sundarbans, Bangladesh. Rhizosphere, 17: 100294.

Ahmed, S., Sarker, S. K., Friess, D. A., Kamruzzaman, M., Jacobs, M., Sillanpää, M., & Pretzsch, H. (2023). Mangrove tree growth is size-dependent across a large-scale salinity gradient. Forest Ecology and Management, 537, 120954.

Alongi, D. M. (2011). Carbon payments for mangrove conservation: ecosystem constraints and uncertainties of sequestration potential. Environmental science & policy, 14(4):462-470.

Aziz, A., & Paul, A. (2015). Bangladesh Sundarbans: present status of the environment and biota. Diversity, 7(3): 242-269.

Castañeda-Moya, E., Twilley, R. R., Rivera-Monroy, V. H., Marx, B. D., Coronado-Molina, C., & Ewe, S. M. (2011). Patterns of root dynamics in mangrove forests along environmental gradients in the Florida Coastal Everglades, USA. Ecosystems, 14(7): 1178-1195.

Chaffey, D.R., Miller, F.R., & Sandom, J.H. (1985). A forest inventory of the Sundarban, Bangladesh. Project Report 140, Land Resources Development Centre, Surrey, England. p 196.

Chave, J., D. A. Coomes, S. Jansen, s. L. Lewis, n. G. Swenson, and a. E. Zanne. (2009). towards a worldwide wood economics spectrum. Ecol. Let. 12: 351−366.

Chave, J., Réjou‐Méchain, M., Búrquez, A., Chidumayo, E., Colgan, M. S., Delitti, W. B., & Vieilledent, G. (2014). Improved allometric models to estimate the aboveground biomass of tropical trees. Global change biology, 20(10), 3177-3190.

Chen, W.P., Hou, Z.N., Wu, L.H., Liang, Y.C., Wei, C.Z. (2010). We are evaluating salinity distribution in soil irrigated with saline water in arid regions of northwest China. Agric Water Manag 97:2001–2008.

Christensen, B. (1978). Biomass and primary production of Rhizophora apiculata Bl. in a mangrove in southern Thailand. Aquatic Botany, 4, 43-52.

Cintron, G., & Novelli, Y. S. (1984). Methods for studying mangrove structure. In Mangrove ecosystem: research methods (pp. 91-113). UNESCO.

Eissenstat, D. M., Wells, C. E., Yanai, R. D., & Whitbeck, J. L. (2000). Building roots in a changing environment: implications for root longevity. The New Phytologist, 147(1) 33-42.

Fairley, R. I. (1985). Methods of calculating fine root production in forests. Ecological Interactions in the Soil, 37-41.

Feller, I. C., Whigham, D. F., McKee, K. L., & Lovelock, C. E. (2003). Nitrogen limitation of growth and nutrient dynamics in a disturbed mangrove forest, Indian River Lagoon, Florida. Oecologia, 134(3), 405-414.

Finér, L., Ohashi, M., Noguchi, K., & Hirano, Y. (2011). Factors causing variation in fine root biomass in forest ecosystems. Forest Ecology and Management, 261(2), 265-277.

Fromard, F., Puig, H., Mougin, E., Marty, G., Betoulle, J. L., & Cadamuro, L. (1998). Structure, above-ground biomass and dynamics of mangrove ecosystems: new data from French Guiana. Oecologia, 115(1-2), 39-53.

Gifford, R. M. (2000). Carbon contents of above-ground tissues of forest and woodland trees. National Carbon Accounting System Technical Report No. 22. Australian Greenhouse Office, Canberra

Heimann, M., & Reichstein, M. (2008). Terrestrial ecosystem carbon dynamics and climate feedbacks. Nature, 451(7176), 289-292.

Heimann, M., Keeling, C. D., & Tucker, C. J. (1989). A three-dimensional model of atmospheric CO2 transport based on observed winds: 3. Seasonal cycle and synoptic time scale variations. Aspects of climate variability in the Pacific and the Western Americas, 55, 277-303.

Hendrick, R. L., & Pregitzer, K. S. (1993). The dynamics of fine root length, biomass, and nitrogen content in two northern hardwood ecosystems. Canadian journal of forest research, 23(12), 2507-2520.

Hendricks, J. J., Hendrick, R. L., Wilson, C. A., Mitchell, R. J., Pecot, S. D., & Guo, D. (2006). Assessing the patterns and controls of fine root dynamics: an empirical test and methodological review. Journal of Ecology, 40-57. How mangrove forests adjust to rising sea level. New Phytologist.

Helmisaari, H. S., Makkonen, K., Kellomäki, S., Valtonen, E., & Mälkönen, E. (2002). Below-and above-ground biomass, production and nitrogen use in Scots pine stands in eastern Finland. Forest ecology and management, 165(1-3), 317-326.

Hossain, M., Siddique, M. R. H., Saha, S., & Abdullah, S. R. (2015). Allometric models for biomass, nutrients and carbon stock in Excoecaria agallocha of the Sundarbans, Bangladesh. Wetlands ecology and management, 23, 765-774.

Idol, T. W., Pope, P. E., & Ponder Jr, F. (2000). Fine root dynamics across a chronosequence of upland temperate deciduous forests. Forest Ecology and Management, 127(1-3), 153-167.

Imada, S., Taniguchi, T., Acharya, K., & Yamanaka, N. (2013). Vertical distribution of fine roots of Tamarix ramosissima in an arid region of southern Nevada. Journal of arid environments, 92, 46-52.

Jackson, R., Mooney, H. A., & Schulze, E. D. (1997). A global budget for fine root biomass, surface area, and nutrient contents. Proceedings of the National Academy of Sciences, 94(14), 7362-7366.

Kamruzzaman, M., Ahmed, S., Paul, S., Rahman, M. M., & Osawa, A. (2018). Stand structure and carbon storage in the oligohaline zone of the Sundarbans mangrove forest, Bangladesh. Forest Science and Technology, 14(1), 23-28.

Kauffman, J. B., Heider, C., Cole, T. G., Dwire, K. A., & Donato, D. C. (2011). Ecosystem carbon stocks of Micronesian mangrove forests. Wetlands, 31(2), 343-352.

Khan, M. N. I., Suwa, R., & Hagihara, A. (2007). Carbon and nitrogen pools in a mangrove stand of Kandelia obovata (S., L.) Yong: vertical distribution in the soil–vegetation system. Wetlands Ecology and Management, 15, 141-153.

Khan, M. Z., & Amin, M. S. (2019). Macro nutrient status of Sundarbans Forest soils in Southern region of Bangladesh. Bangladesh Journal of Scientific and Industrial Research, 54(1), 67-72.

Klimešová, J., Latzel, V., de Bello, F., & van Groenendael, J. M. (2008). Plant functional traits in studies of vegetation changes in response to grazing and mowing: towards a use of more specific traits. Preslia, 80(3), 245-253.

Komiyama, A., Poungparn, S., & Kato, S. (2005). Common allometric equations for estimating the tree weight of mangroves. Journal of tropical ecology, 21(4), 471-477.

Krauss KW, McKee KL, Lovelock CE, Cahoon DR, Saintilan N, Reef R, Chen L (2013). How mangrove forests adjust to rising sea level. New Phytologist.

Kusmana, C., & SABIHAM, S. (1992). An estimation of above-ground tree biomass of a mangrove forest in East Sumatra, Indonesia. Tropics, 1(4), 243-257.

Li, X., Zhu, J., Lange, H., & Han, S. (2013). A modified ingrowth core method for measuring fine root production, mortality and decomposition in forests. Tree Physiology, 33(1), 18-25.

Liu, H., Ren, H., Hui, D., Wang, W., Liao, B., & Cao, Q. (2014). Carbon stocks and potential carbon storage in the mangrove forests of China. Journal of Environmental Management, 133, 86-93.

López, B., Sabaté, S., & Gracia, C. (1998). Fine roots dynamics in a Mediterranean forest: effects of drought and stem density. Tree physiology, 18(8-9), 601-606.

López, B., Sabaté, S., & Gracia, C. A. (2001). Fine‐root longevity of Quercus ilex. New Phytologist, 151(2), 437-441.

McKee, K. L., Cahoon, D. R., & Feller, I. C. (2007). Caribbean mangroves adjust to rising sea level through biotic controls on change in soil elevation. Global Ecology and Biogeography, 16(5), 545-556.

Meinen, C., Hertel, D., & Leuschner, C. (2009). Root growth and recovery in temperate broad-leaved forest stands differing in tree species diversity. Ecosystems, 12(7), 1103-1116.

Mitra, A., Sengupta, K., & Banerjee, K. (2011). Standing biomass and carbon storage of above-ground structures in dominant mangrove trees in the Sundarbans. Forest Ecology and Management, 261(7), 1325-1335.

Naidoo, G. (2009). Differential effects of nitrogen and phosphorus enrichment on growth of dwarf Avicennia marina mangroves. Aquatic Botany, 90(2), 184-190.

Neill, C. (1992). Comparison of soil coring and ingrowth methods for measuring belowground production. Ecology, 73(5), 1918-1921.

Nagarajan, B., Pandiarajan, C., Krishnamoorthy, M., & Sophia, P. (2008). Reproductive fitness and success in mangroves: implication on conservation. In Proceedings of Taal The 12th World Lake Conference (pp. 29-33).

Osawa, A., & Aizawa, R. (2012). A new approach to estimate fine root production, mortality, and decomposition using litter bag experiments and soil core techniques. Plant and Soil, 355(1), 167-181.

Ostonen, I., Lõhmus, K., & Pajuste, K. (2005). Fine root biomass, production and its proportion of NPP in a fertile middle-aged Norway spruce forest: comparison of soil core and ingrowth core methods. Forest Ecology and Management, 212(1-3), 264-277.

Padalia, H., Chauhan, N., Porwal, M. C., & Roy, P. S. (2004). Phytosociological observations on tree species diversity of Andaman Islands, India. Current Science, 799-806.

Perera, K. A. R. S., Amarasinghe, M. D., & Somaratna, S. (2013). Vegetation structure and species distribution of mangroves along a soil salinity gradient in a micro-tidal estuary on the north-western coast of Sri Lanka. American Journal of Marine Science, 1(1), 7-15.

Poungparn, S., Komiyama, A., Sangteian, T., Maknual, C., Patanaponpaiboon, P., & Suchewaboripont, V. (2012). High primary productivity under submerged soil raises the net ecosystem productivity of a secondary mangrove forest in eastern Thailand. Journal of Tropical Ecology, 28(3), 303-306.

Poungparn, S., Charoenphonphakdi, T., Sangtiean, T., & Patanaponpaiboon, P. (2016). Fine root production in three zones of secondary mangrove forest in eastern Thailand. Trees, 30(2), 467-474.

R Core Team (2022). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/.

Rahman, M. R., & Asaduzzaman, M. (2010). Ecology of sundarban, bangladesh. Journal of Science Foundation, 8(1-2), 35-47.

Ray, R., Ganguly, D., Chowdhury, C., Dey, M., Das, S., Dutta, M. K. ... & Jana, T. K. (2011). Carbon sequestration and annual increase of carbon stock in a mangrove forest. Atmospheric Environment, 45(28), 5016-5024.

Roy, S. D., & Krishnan, P. (2005). Mangrove stands of Andamans vis-à-vis tsunami. Current Science, 89(11), 1800-1804.

Ross, M. S., Ruiz, P. L., Telesnicki, G. J., & Meeder, J. F. (2001). Estimating above-ground biomass and production in mangrove communities of Biscayne National Park, Florida (USA). Wetlands Ecology and Management, 9(1), 27-37.

Siddique, M. R. H., Zuidema, P. A., Sass-Klaassen, U., & Chowdhury, M. Q. (2021). Ring width and vessel features of the mangrove Excoecaria agallocha L. depend on salinity in the Sundarbans, Bangladesh. Dendrochronologia, 68, 125857.

Sitoe, A., Mandlate, L., & Guedes, B. (2014). Biomass and carbon stocks of Sofala bay mangrove forests. Forests, 5(8), 1967-1981.

Suzuki, E., & Tagawa, H. (1983). Biomass of a mangrove forest and a sedge marsh on Ishigaki Island, south Japan. Japanese Journal of Ecology, 33(2), 231-234.

Tomlinson, P.B. (1986). The Botany of Mangroves. Cambridge University Press, Cambridge, U.K. 413 pp.

Trumbore, S. E., & Gaudinski, J. B. (2003). The secret lives of roots. Science, 302(5649), 1344-1345.

Uddin, M. M., Hossain, M. M., Aziz, A. A., & Lovelock, C. E. (2022). Ecological development of mangrove plantations in the Bangladesh Delta. Forest Ecology and Management, 517, 120269.

Van Do, T., Sato, T., & Kozan, O. (2016). A new approach for estimating fine root production in forests: a combination of ingrowth core and scanner. Trees, 30, 545-554.

Wahid, S. M., Babel, M. S., & Bhuiyan, A. R. (2007). Hydrologic monitoring and analysis in the Sundarbans mangrove ecosystem, Bangladesh. Journal of Hydrology, 332(3-4), 381-395.

Wang, G., Guan, D., Peart, M. R., Chen, Y., & Peng, Y. (2013). Ecosystem carbon stocks of mangrove forest in Yingluo Bay, Guangdong Province of South China. Forest Ecology and Management, 310, 539-546. Washington, pp 225–249.

Westoby, M., Falster, D. S., Moles, A. T., Vesk, P. A., & Wright, I. J. (2002). Plant ecological strategies: some leading dimensions of variation between species. Annual review of ecology and systematics, 33(1), 125-159.

Xiao, C. W., Sang, W. G., & Wang, R. Z. (2008). Fine root dynamics and turnover rate in an Asia white birch forest of Donglingshan Mountain, China. Forest Ecology and Management, 255(3-4), 765-773.

Yang, L., Wu, S., & Zhang, L. (2010). Fine root biomass dynamics and carbon storage along a successional gradient in Changbai Mountains, China. Forestry, 83(4), 379-387.

Downloads

Published

19-10-2023

How to Cite

[1]
M. Kamruzzaman, R. R. . Hredoy, and M. M. Islam, “STAND STRUCTURE AND FINE ROOT PRODUCTION WITH THEIR BENEFACTION TO CARBON STORAGE IN THE SUNDARBANS MANGROVE FOREST”, Khulna Univ. Stud., pp. 58–70, Oct. 2023.

Issue

Section

Life Science

Similar Articles

1 2 3 4 5 6 7 8 9 10 > >> 

You may also start an advanced similarity search for this article.