CLOT LYSIS AND MEMBRANE PROTECTION POTENTIALS OF CHEILANTHES TENUIFOLIA METHANOLIC LEAF EXTRACT

Authors

  • Md. Showkoth Akbor Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj 8100, Bangladesh
  • Md. Sakib Al Hasan Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj 8100, Bangladesh
  • Mst. Farjanamul Haque Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj 8100, Bangladesh
  • Md. Sakib Hossain Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj 8100, Bangladesh
  • Touhidul Islam Tanim Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj 8100, Bangladesh
  • Salehin Sheikh Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj 8100, Bangladesh
  • Abdullah Al Faruq Department of Pharmacy, Southern University Bangladesh, Chattagram 4210, Bangladesh
  • Muhammad Torequl Islam Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj 8100

DOI:

https://doi.org/10.53808/KUS.2023.20.02.1019-ls

Keywords:

Cheilanthes tenuifolia, clot lysis capacity, membrane stabilizing activity

Abstract

Cheilanthes tenuifolia is a little perennial fern that falls within the taxonomic classification of the Pteridaceae botanical family. The plant has a diverse array of phytochemical substances, including alkaloids, phenolic compounds, flavonoids, saponins, steroids, and triterpenoids, which have demonstrated promising medicinal properties. This study aimed to evaluate the in-vitro membrane-stabilizing and clot lysis activities of a methanol leaf extract of C. tenuifolia (MCT). For this, we performed hypotonic solution-induced erythrocyte lysing and human blood clot lysis methods to check the membrane stabilizing and clot lysis capacities of MCT using acetylsalicylic acid and streptokinase as standards, respectively. Additionally, we also checked its phytochemical groups. The results of a preliminary phytochemical screening indicate the presence of alkaloids, glycosides, tannins, flavonoids, and saponins in the plant. MCT inhibited hemolysis in a concentration-dependent manner and inhibited 78.93 ± 0.01% hemolysis (IC50 = 46 ± 2.11 µg/ml) at the higher concentration (160 μg/ml), whereas the standard drug, acetylsalicylic acid (IC50 = 64.10 ± 2.08 µg/ml) inhibited 97.71 ± 0.01% at the same concentration. It also exhibited clot lysis in a concentration-dependent manner, where the maximum percentage of clot lysis was observed at 160 μg/100 ml where the IC50 value was 198.41 ± 1.87 µg. The standard drug streptokinase showed 77.51 ± 0.01% clot lysis. C. tenuifolia possesses various important secondary metabolites and shows membrane stabilizing and clot lysis capacity. Further studies are required to elucidate its active principles and their biological effects.

Downloads

Download data is not yet available.

References

Abd El-Baky, N., Amara, A. A. A. F., & Redwan, E. M. (2023). Nutraceutical and therapeutic importance of clots and their metabolites. Nutraceuticals (pp. 241-268). Academic Press. DOI: https://doi.org/10.1016/B978-0-443-19193-0.00009-5

Adrar, N. S., Madani, K., & Adrar, S. (2019). Impact of the inhibition of proteins activities and the chemical aspect of polyphenols-proteins interactions. PharmaNutrition, 7, 100142. DOI: https://doi.org/10.1016/j.phanu.2019.100142

Ahirwar, P., & Tembhre, M. (2021). Preliminary phytochemical analysis, antioxidant activity, phenolic and flavonoid contents of Annona reticulata leaf extract. Asian Journal of Experimental Sciences, 35(2), 19-25.

Akbari, B., Baghaei‐Yazdi, N., Bahmaie, M., & Mahdavi Abhari, F. (2022). The role of plant‐derived natural antioxidants in reduction of oxidative stress. BioFactors, 48(3), 611-633. DOI: https://doi.org/10.1002/biof.1831

Anosike, C. A., Igboegwu, O. N., & Nwodo, O. F. C. (2019). Antioxidant properties and membrane stabilization effects of methanol extract of Mucuna pruriens leaves on normal and sickle erythrocytes. Journal of Traditional and Complementary Medicine, 9(4), 278-284. DOI: https://doi.org/10.1016/j.jtcme.2017.08.002

Aronson, J. K. (2008). Changing beta-blockers in heart failure: when is a class not a class? British Journal of General Practice, 58(551), 387-389. DOI: https://doi.org/10.3399/bjgp08X299317

Atanasov, A. G., Waltenberger, B., Pferschy-Wenzig, E. M., Linder, T., Wawrosch, C., Uhrin, P., ... & Stuppner, H. (2015). Discovery and resupply of pharmacologically active plant-derived natural products: A review. Biotechnology Advances, 33(8), 1582-1614. DOI: https://doi.org/10.1016/j.biotechadv.2015.08.001

Aulakh, M. K., Kaur, N. A. V. D. E. E. P., & Saggoo, M. I. S. (2019). Bioactive phytoconstituents of pteridophytes–a review. The Indian Fern Journal, 36, 37-79.

Bozimowski, G. (2015). A review of nonsteroidal anti-inflammatory drugs. AANA Journal, 83(6).

Chiloane, B. G. (2019). In-vitro toxicity of weight-loss supplements conjugated linoleic acid Levo-carnitine and hydroxycitric acid (Doctoral dissertation, University of Pretoria).

Class, I. (2015). Pharmacology of Anti-arrhythmic Agents. Clinical Cardiac Electrophysiology in the Young, 333. DOI: https://doi.org/10.1007/978-1-4939-2739-5_22

Cole, J. B., & Roberts, D. J. (2017). Cardiovascular drugs. Rosen's Emergency Medicine-Concepts and Clinical Practice E-Book. Walls, R., Hockberger, R., Gausche-Hill, M. (Eds.), 1876-1889.

da Luz, P. L., Chagas, A. C. P., Dourado, P. M. M., & Laurindo, F. R. (2018). Endothelium in atherosclerosis: plaque formation and its complications. In Endothelium and Cardiovascular Diseases (pp. 493-512). Academic Press. DOI: https://doi.org/10.1016/B978-0-12-812348-5.00033-7

Debbarma, M., Pala, N. A., Kumar, M., & Bussmann, R. W. (2017). Traditional knowledge of medicinal plants in tribes of Tripura in northeast, India. African Journal of Traditional, Complementary and Alternative Medicines, 14(4), 156-168. DOI: https://doi.org/10.21010/ajtcam.v14i4.19

Derouich, M., Bouhlali, E. D. T., Hmidani, A., Bammou, M., Bourkhis, B., Sellam, K., & Alem, C. (2020). Assessment of total polyphenols, flavonoids and anti-inflammatory potential of three Apiaceae species grown in the Southeast of Morocco. Scientific African, 9, e00507. DOI: https://doi.org/10.1016/j.sciaf.2020.e00507

Diniz, T. C., Silva, J. C., Lima-Saraiva, S. R. G. D., Ribeiro, F. P. R. D. A., Pacheco, A. G. M., de Freitas, R. M., ... & Almeida, J. R. G. D. S. (2015). The role of flavonoids on oxidative stress in epilepsy. Oxidative Medicine and Cellular Longevity, 2015. DOI: https://doi.org/10.1155/2015/171756

Dumotier, B. M. (2015). Republished: A straightforward guide to the basic science behind arrhythmogenesis. Postgraduate Medical Journal, 91(1074), 221-229. DOI: https://doi.org/10.1136/postgradmedj-2014-305647rep

Eisen, A., Bhatt, D. L., Steg, P. G., Eagle, K. A., Goto, S., Guo, J., ... & REACH Registry Investigators. (2016). Angina and future cardiovascular events in stable patients with coronary artery disease: insights from the Reduction of Atherothrombosis for Continued Health (REACH) Registry. Journal of the American Heart Association, 5(10), e004080. DOI: https://doi.org/10.1161/JAHA.116.004080

Engwa, G. A. (2018). Free radicals and the role of plant phytochemicals as antioxidants against oxidative stress-related diseases. Phytochemicals: source of antioxidants and role in disease prevention. BoD–Books on Demand, 7, 49-74. DOI: https://doi.org/10.5772/intechopen.76719

Field AR, Quinn CJ, Zich FA (2022) Australian Tropical Ferns and Lycophytes. Australian Tropical Herbarium, Cairns; Australian Biological Resources Study, Canberra; Identic, Brisbane. Apps.lucidcentral.org/fern/text/intro/index.htm

Flora, G. D., & Nayak, M. K. (2019). A brief review of cardiovascular diseases, associated risk factors and current treatment regimes. Current Pharmaceutical Design, 25(38), 4063-4084. DOI: https://doi.org/10.2174/1381612825666190925163827

Foadi, N. (2018). Modulation of sodium channels as pharmacological tool for pain therapy—highlights and gaps. Naunyn-Schmiedeberg's Archives of Pharmacology, 391(5), 481-488. DOI: https://doi.org/10.1007/s00210-018-1487-3

Fouda, M. A., Ghovanloo, M. R., & Ruben, P. C. (2022). Late sodium current: incomplete inactivation triggers seizures, myotonias, arrhythmias, and pain syndromes. The Journal of Physiology, 600(12), 2835-2851. DOI: https://doi.org/10.1113/JP282768

Friedrich, O., Reid, M. B., Van den Berghe, G., Vanhorebeek, I., Hermans, G., Rich, M. M., & Larsson, L. (2015). The sick and the weak: neuropathies/myopathies in the critically ill. Physiological Reviews, 95(3), 1025-1109. DOI: https://doi.org/10.1152/physrev.00028.2014

Ghorpade, P. N., Thakar, S. B., Dongare, M. M., & Kale, M. V. (2015). Phytochemical analysis of four Cheilanthes species from Northern Western Ghats of India. Research Journal of Life Sciences, Bioinformatics, Pharmaceutical and Chemical Sciences, 1(2), 92.

Gunjan, M., Naing, T. W., Saini, R. S., Ahmad, A., Naidu, J. R., & Kumar, I. (2015). Marketing trends & future prospects of herbal medicine in the treatment of various disease. World Journal of Pharmaceutical Research, 4(9), 132-155.

Halder, M., & Jha, S. (2023). Medicinal Plants and Bioactive Phytochemical Diversity: A Fountainhead of Potential Drugs against Human Diseases. In Medicinal Plants: Biodiversity, Biotechnology and Conservation (pp. 39-93). Singapore: Springer Nature Singapore. DOI: https://doi.org/10.1007/978-981-19-9936-9_2

Islam MT. PHARMACOGNOSY in natural product drug discovery. Mahi Publication, Ahmedabad-380007, India 2021.

Jamshidi-Kia, F., Lorigooini, Z., & Amini-Khoei, H. (2017). Medicinal plants: Past history and future perspective. Journal of Herbmed Pharmacology, 7(1), 1-7. DOI: https://doi.org/10.15171/jhp.2018.01

Jarial, R., Shard, A., Thakur, S., Sakinah, M., Zularisam, A. W., Rezania, S., ... & Singh, L. (2018). Characterization of flavonoids from fern Cheilanthes tenuifolia and evaluation of antioxidant, antimicrobial and anticancer activities. Journal of King Saud University-Science, 30(4), 425-432.

Jarial, R., Shard, A., Thakur, S., Sakinah, M., Zularisam, A. W., Rezania, S., ... & Singh, L. (2018). Characterization of flavonoids from fern Cheilanthes tenuifolia and evaluation of antioxidant, antimicrobial and anticancer activities. Journal of King Saud University-Science, 30(4), 425-432. DOI: https://doi.org/10.1016/j.jksus.2017.04.007

Kim, I. S., Hwang, C. W., Yang, W. S., & Kim, C. H. (2021). Current perspectives on the physiological activities of fermented soybean-derived cheonggukjang. International Journal of Molecular Sciences, 22(11), 5746. DOI: https://doi.org/10.3390/ijms22115746

Kim, K., & Park, K. I. (2019). A review of antiplatelet activity of traditional medicinal herbs on integrative medicine studies. Evidence-Based Complementary and Alternative Medicine, 2019. DOI: https://doi.org/10.1155/2019/7125162

Kolodziejczyk-Czepas, J., & Czepas, J. (2023). Plant-Derived Compounds and Extracts as Modulators of Plasmin Activity—A Review. Molecules, 28(4), 1677. DOI: https://doi.org/10.3390/molecules28041677

Komajda, M., Anker, S. D., Cowie, M. R., Filippatos, G. S., Mengelle, B., Ponikowski, P., ... & QUALIFY Investigators. (2016). Physicians' adherence to guideline‐recommended medications in heart failure with reduced ejection fraction: data from the QUALIFY global survey. European Journal of Heart Failure, 18(5), 514-522. DOI: https://doi.org/10.1002/ejhf.510

Maleki, S. J., Crespo, J. F., & Cabanillas, B. (2019). Anti-inflammatory effects of flavonoids. Food Chemistry, 299, 125124. DOI: https://doi.org/10.1016/j.foodchem.2019.125124

Marimuthu, J., Janakiraman, N., Chandra Saleride, J., Sivaraman, A., Shivananthini, B., & Paulraj, K. (2022). Phytochemistry of Indian pteridophytes: a review. Ferns: Biotechnology, Propagation, Medicinal Uses and Environmental Regulation, 433-480. DOI: https://doi.org/10.1007/978-981-16-6170-9_19

Merlyn Keziah, S., & Subathra Devi, C. (2018). Focalization of thrombosis and therapeutic perspectives: a memoir. Oriental Pharmacy and Experimental Medicine, 18, 281-298. DOI: https://doi.org/10.1007/s13596-018-0331-0

Nag, O. K., Muroski, M. E., Hastman, D. A., Almeida, B., Medintz, I. L., Huston, A. L., & Delehanty, J. B. (2020). Nanoparticle-mediated visualization and control of cellular membrane potential: Strategies, progress, and remaining issues. Acs Nano, 14(3), 2659-2677. DOI: https://doi.org/10.1021/acsnano.9b10163

Patel, A. B., & Day, M. (2018). 97 Nonsteroidal Anti-Inflammatory Drugs. Ramamurthy's Decision Making in Pain Management, 278.

Patel, V., Manek, R. A., & Sheth, D. B. (2021). Evaluation of in-vitro Thrombolytic activity of methanolic extract of Prunus avium L. Asian Journal of Research in Pharmaceutical Sciences, 11(1): 41-44. DOI: https://doi.org/10.5958/2231-5659.2021.00007.2

Pogatzki-Zahn, E. M., Segelcke, D., & Schug, S. A. (2017). Postoperative pain—from mechanisms to treatment. Pain Reports, 2(2). DOI: https://doi.org/10.1097/PR9.0000000000000588

Prasad S, Kashyap RS, Deopujari JY, Purohit HJ, Taori GM, Daginawala HF. Development of an in-vitro model to study clot lysis activity of thrombolytic drugs. Thrombosis Journal, 2006; 4(1):14. DOI: https://doi.org/10.1186/1477-9560-4-14

Remesal, A., De Luca, D., San Feliciano, L., Isidoro-Garcia, M., Minucci, A., Pocino, K., ... & de la Cruz, D. L. (2016). Effect of prenatal steroidal inhibition of sPLA2 in a rat model of preterm lung. Pulmonary Pharmacology & Therapeutics, 36, 31-36. DOI: https://doi.org/10.1016/j.pupt.2015.12.001

Ripa, F. A., Hossain, M. J., Munira, M. S., Roy, A., Riya, F. H., Alam, F., ... & Khidir, E. B. (2022). Phytochemical and pharmacological profiling of Trewia nudiflora Linn. leaf extract deciphers therapeutic potentials against thrombosis, arthritis, helminths, and insects. Open Chemistry, 20(1), 1304-1312. DOI: https://doi.org/10.1515/chem-2022-0244

Saleem, A., Saleem, M., & Akhtar, M. F. (2020). Antioxidant, anti-inflammatory and antiarthritic potential of Moringa oleifera Lam: An ethnomedicinal plant of Moringaceae family. South African Journal of Botany, 128, 246-256. DOI: https://doi.org/10.1016/j.sajb.2019.11.023

Serafim, C., Araruna, M. E., Júnior, E. A., Diniz, M., Hiruma-Lima, C., & Batista, L. (2020). A review of the role of flavonoids in peptic ulcer (2010–2020). Molecules, 25(22), 5431. DOI: https://doi.org/10.3390/molecules25225431

Shakeela, R., & Sugumar, S. N. (2019). Agriculture and Women's Health. Indian Journal of Public Health Research & Development, 10(11). DOI: https://doi.org/10.5958/0976-5506.2019.03549.6

Sharifi-Rad, J., Quispe, C., Shaheen, S., El Haouari, M., Azzini, E., Butnariu, M., ... & Calina, D. (2022). Flavonoids as potential anti-platelet aggregation agents: from biochemistry to health promoting abilities. Critical Reviews in Food Science and Nutrition, 62(29), 8045-8058. DOI: https://doi.org/10.1080/10408398.2021.1924612

Shinde, U. A., Phadke, A. S., Nair, A. M., Mungantiwar, A. A., Dikshit, V. J., & Saraf, M. N. (1999). Membrane stabilizing activity—a possible mechanism of action for the anti-inflammatory activity of Cedrus deodara wood oil. Fitoterapia, 70(3), 251-257. DOI: https://doi.org/10.1016/S0367-326X(99)00030-1

Sivashanmugarajah, A., Fulcher, J., Sullivan, D., Elam, M., Jenkins, A., & Keech, A. (2019). Suggested clinical approach for the diagnosis and management of ‘statin intolerance’ with an emphasis on muscle‐related side‐effects. Internal Medicine Journal, 49(9), 1081-1091. DOI: https://doi.org/10.1111/imj.14429

Tariq, L., Bhat, B. A., Hamdani, S. S., & Mir, R. A. (2021). Phytochemistry, pharmacology and toxicity of medicinal plants. Medicinal and Aromatic Plants: Healthcare and Industrial Applications, 217-240. DOI: https://doi.org/10.1007/978-3-030-58975-2_8

Thomford, N. E., Dzobo, K., Chopera, D., Wonkam, A., Skelton, M., Blackhurst, D., ... & Dandara, C. (2015). Pharmacogenomics implications of using herbal medicinal plants on African populations in health transition. Pharmaceuticals, 8(3), 637-663. DOI: https://doi.org/10.3390/ph8030637

Vijayalakshmi, A., Ravichandiran, V., Velraj, M., Hemalatha, S., Sudharani, G., & Jayakumari, S. (2011). Anti–anaphylactic and anti–inflammatory activities of a bioactive alkaloid from the root bark of Plumeria acutifolia Poir. Asian Pacific Journal of Tropical Biomedicine, 1(5), 401-405. DOI: https://doi.org/10.1016/S2221-1691(11)60088-9

Downloads

Published

19-12-2023

How to Cite

[1]
M. S. Akbor, “CLOT LYSIS AND MEMBRANE PROTECTION POTENTIALS OF CHEILANTHES TENUIFOLIA METHANOLIC LEAF EXTRACT”, Khulna Univ. Stud., pp. 122–130, Dec. 2023.

Issue

Section

Life Science

Similar Articles

1 2 3 4 5 6 7 8 9 > >> 

You may also start an advanced similarity search for this article.