POTENTIAL TOXICITY OF PESTICIDES AND ITS TRANSFORMATION PRODUCTS TO AQUATIC ORGANISMS
DOI:
https://doi.org/10.53808/KUS.2024.21.01.1104-lsKeywords:
Pesticides, Fish, Bioaccumulation, Transformed productsAbstract
The escalation of agricultural productivity in recent decades has compelled a swift upsurge in the utilization of pesticides, ultimately leading to their presence in the aquatic ecosystem. Pesticides and their transformed products have negative effects on the growth, reproduction, physiology, immunity, and histopathology of multiple tissues of fish. Pesticides have emerged as a significant global problem because to their potential to bioaccumulate inside various fish tissues, hence posing substantial health risks for consumers. Within this particular context, the present review aims to illustrate the potential adverse effects of pesticides and their transformed products on aquatic organisms, with a specific focus on fish. Research has revealed that the introduction of pesticides into aquatic environments might have detrimental effects on the mangroves and immunological response of fish, ultimately exacerbating the ecological impact by increasing their vulnerability to diseases. Hence, it is imperative to explore environmentally friendly, efficient, and appropriate pesticide alternatives in order to safeguard the aquatic ecosystems and the overall health of various aquatic life, particularly fish.
Downloads
References
Afolabi, O. K., Aderibigbe, F. A., Folarin, D. T., Arinola, A., & Wusu, A. D. (2019). Oxidative stress and inflammation following sub-lethal oral exposure of cypermethrin in rats: Mitigating potential of epicatechin. Heliyon, 5(8). DOI: https://doi.org/10.1016/j.heliyon.2019.e02274
Aktar, M. W., Sengupta, D., & Chowdhury, A. (2009). Impact of pesticides use in agriculture: their benefits and hazards. Interdisciplinary Toxicology, 2(1), 1. DOI: https://doi.org/10.2478/v10102-009-0001-7
Alexandratos, N., & Bruinsma, J. (2012). World agriculture towards 2030/2050: the 2012 revision.
Anagnostopoulou, K., Nannou, C., Evgenidou, E., & Lambropoulou, D. (2022). Overarching issues on relevant pesticide transformation products in the aquatic environment: A review. Science of The Total Environment, 815, 152863. DOI: https://doi.org/10.1016/j.scitotenv.2021.152863
Arslan, H., Özdemir, S., & Altun, S. (2017). Cypermethrin toxication leads to histopathological lesions and induces inflammation and apoptosis in common carp (Cyprinus carpio L.). Chemosphere, 180, 491-499. DOI: https://doi.org/10.1016/j.chemosphere.2017.04.057
Bekele, D. (2018). Review on insecticidal and repellent activity of plant products for malaria mosquito control. Biomedical Research and Reviews, 2, 1-7. DOI: https://doi.org/10.15761/BRR.1000114
Belfroid, A. C., Van Drunen, M., Beek, M. A., Schrap, S. M., Van Gestel, C. A. M., & Van Hattum, B. (1998). Relative risks of transformation products of pesticides for aquatic ecosystems. Science of the Total Environment, 222(3), 167-183. DOI: https://doi.org/10.1016/S0048-9697(98)00298-8
Belfroid, A. C., Van Drunen, M., Van Gestel, C. A. M., & Van Hattum, B. (1996). Relative risks of transformation products of pesticides for aquatic ecosystems. Instituut voor Milieuvraagstukken, Vrije Universiteit.
Bhattacharya, B., Sarkar, S. K., & Mukherjee, N. (2003). Organochlorine pesticide residues in sediments of a tropical mangrove estuary, India: implications for monitoring. Environment International, 29(5), 587-592. DOI: https://doi.org/10.1016/S0160-4120(03)00016-3
Borrell, A., Tornero, V., Bhattacharjee, D., & Aguilar, A. (2019). Organochlorine concentrations in aquatic organisms from different trophic levels of the Sundarbans mangrove ecosystem and their implications for human consumption. Environmental Pollution, 251, 681-688. DOI: https://doi.org/10.1016/j.envpol.2019.04.120
Boxshall, G. A., & Defaye, D. (2008). Global diversity of copepods (Crustacea: Copepoda) in freshwater. Freshwater Animal Diversity Assessment, 195-207. DOI: https://doi.org/10.1007/978-1-4020-8259-7_21
Brewer, S. K., Little, E. E., DeLonay, A. J., Beauvais, S. L., Jones, S. B., & Ellersieck, M. R. (2001). Behavioral dysfunctions correlate to altered physiology in rainbow trout (Oncorynchus mykiss) exposed to cholinesterase-inhibiting chemicals. Archives of Environmental Contamination and Toxicology, 40, 70-76. DOI: https://doi.org/10.1007/s002440010149
Buah-Kwofie, A., Humphries, M. S., & Pillay, L. (2018). Bioaccumulation and risk assessment of organochlorine pesticides in fish from a global biodiversity hotspot: iSimangaliso Wetland Park, South Africa. Science of the Total Environment, 621, 273-281. DOI: https://doi.org/10.1016/j.scitotenv.2017.11.212
Casida, J. E. (2009). Pest toxicology: the primary mechanisms of pesticide action. Chemical Research in Toxicology, 22(4), 609-619. DOI: https://doi.org/10.1021/tx8004949
Chen, D., Zhang, Z., Yao, H., Cao, Y., Xing, H., & Xu, S. (2014). Pro-and anti-inflammatory cytokine expression in immune organs of the common carp exposed to atrazine and chlorpyrifos. Pesticide Biochemistry and Physiology, 114, 8-15. DOI: https://doi.org/10.1016/j.pestbp.2014.07.011
Chen, K., Cai, M., Wang, Y., Chen, B., Li, X., Qiu, C., ... & Ke, H. (2020). Organochlorine pesticides in sediment of Zhang River estuary mangrove national natural reserve: The implication of its source change in China’s mangroves. Sustainability, 12(7), 3016.
Chen, K., Cai, M., Wang, Y., Chen, B., Li, X., Qiu, C., ... & Ke, H. (2020). Organochlorine pesticides in sediment of Zhang River estuary mangrove national natural reserve: The implication of its source change in China’s mangroves. Sustainability, 12(7), 3016. DOI: https://doi.org/10.3390/su12073016
Clasen, B., Loro, V. L., Murussi, C. R., Tiecher, T. L., Moraes, B., & Zanella, R. (2018). Bioaccumulation and oxidative stress caused by pesticides in Cyprinus carpio reared in a rice-fish system. Science of the Total Environment, 626, 737-743. DOI: https://doi.org/10.1016/j.scitotenv.2018.01.154
Cuevas, N., Martins, M., & Costa, P. M. (2018). Risk assessment of pesticides in estuaries: a review addressing the persistence of an old problem in complex environments. Ecotoxicology, 27(7), 1008-1018. DOI: https://doi.org/10.1007/s10646-018-1910-z
de Souza, K. B., Asker, N., Jönsson, E., Förlin, L., & Sturve, J. (2016). Increased activity of lysozyme and complement system in Atlantic halibut exposed to elevated CO2 at six different temperatures. Marine Environmental Research, 122, 143-147. DOI: https://doi.org/10.1016/j.marenvres.2016.09.005
Dhananjayan, V., & Muralidharan, S. (2010). Organochlorine pesticide residues in inland wetland fishes of Karnataka, India and their implications on human dietary intake. Bulletin of Environmental Contamination and Toxicology, 85, 619-623. DOI: https://doi.org/10.1007/s00128-010-0122-x
Ernst, F., Alonso, B., Colazzo, M., Pareja, L., Cesio, V., Pereira, A., ... & Pérez-Parada, A. (2018). Occurrence of pesticide residues in fish from South American rainfed agroecosystems. Science of the Total Environment, 631, 169-179. DOI: https://doi.org/10.1016/j.scitotenv.2018.02.320
FAOSTAT (2020) pesticides trade dataset [WWW Document]. Annual (2020)
Farag, M. R., Alagawany, M., Bilal, R. M., Gewida, A. G., Dhama, K., Abdel-Latif, H. M., ... & Naiel, M. A. (2021). An overview on the potential hazards of pyrethroid insecticides in fish, with special emphasis on cypermethrin toxicity. Animals, 11(7), 1880. DOI: https://doi.org/10.3390/ani11071880
Gerber, R., Smit, N. J., Van Vuren, J. H., Nakayama, S. M., Yohannes, Y. B., Ikenaka, Y., ... & Wepener, V. (2016). Bioaccumulation and human health risk assessment of DDT and other organochlorine pesticides in an apex aquatic predator from a premier conservation area. Science of the Total Environment, 550, 522-533. DOI: https://doi.org/10.1016/j.scitotenv.2016.01.129
Guo, L., Qiu, Y., Zhang, G., Zheng, G. J., Lam, P. K., & Li, X. (2008). Levels and bioaccumulation of organochlorine pesticides (OCPs) and polybrominated diphenyl ethers (PBDEs) in fishes from the Pearl River estuary and Daya Bay, South China. Environmental Pollution, 152(3), 604-611. DOI: https://doi.org/10.1016/j.envpol.2007.06.067
Guzzella, L., Poma, G., De Paolis, A., Roscioli, C., & Viviano, G. (2011). Organic persistent toxic substances in soils, waters and sediments along an altitudinal gradient at Mt. Sagarmatha, Himalayas, Nepal. Environmental Pollution, 159(10), 2552-2564. DOI: https://doi.org/10.1016/j.envpol.2011.06.015
Helfrich, L. A., Weigmann, D. L., Hipkins, P. A., & Stinson, E. R. (2009). Pesticides and aquatic animals: a guide to reducing impacts on aquatic systems. Virginia Tech, Virginia state University.
Henny, C. J., Kaiser, J. L., Grove, R. A., Bentley, V. R., & Elliott, J. E. (2003). Biomagnification factors (fish to osprey eggs from Willamette River, Oregon, USA) for PCDDs, PCDFs, PCBs and OC pesticides. Environmental Monitoring and Assessment, 84, 275-315. DOI: https://doi.org/10.1023/A:1023396815092
Islam, M. A., Amin, S. N., Rahman, M. A., Juraimi, A. S., Uddin, M. K., Brown, C. L., & Arshad, A. (2022). Chronic effects of organic pesticides on the aquatic environment and human health: A review. Environmental Nanotechnology, Monitoring & Management, 100740. DOI: https://doi.org/10.1016/j.enmm.2022.100740
Ivorra, L., Cardoso, P. G., Chan, S. K., Cruzeiro, C., & Tagulao, K. A. (2021). Can mangroves work as an effective phytoremediation tool for pesticide contamination? An interlinked analysis between surface water, sediments and biota. Journal of Cleaner Production, 295, 126334. DOI: https://doi.org/10.1016/j.jclepro.2021.126334
Jabber, S. M. A., Khan, Y. S. A., & Rahman, M. S. (2001). Levels of organochlorine pesticide residues in some organs of the Ganges perch, Lates calcarifer, from the Ganges–Brahmaputra–Meghna estuary, Bangladesh. Marine Pollution Bulletin, 42(12), 1291-1296. DOI: https://doi.org/10.1016/S0025-326X(00)00161-2
Kakko, I., Toimela, T., & Tähti, H. (2003). The synaptosomal membrane bound ATPase as a target for the neurotoxic effects of pyrethroids, permethrin and cypermethrin. Chemosphere, 51(6), 475-480. DOI: https://doi.org/10.1016/S0045-6535(02)00854-8
Kaur, R., & Singh, J. (2021). Toxicity, Monitoring, and Biodegradation of Cypermethrin Insecticide: A Review. Nature Environment and Pollution Technology, 20(5), 1997-2005. DOI: https://doi.org/10.46488/NEPT.2021.v20i05.016
Kaya, H., Çelik, E. Ş., Yılmaz, S., Tulgar, A., Akbulut, M., & Demir, N. (2015). Hematological, serum biochemical, and immunological responses in common carp (Cyprinus carpio) exposed to phosalone. Comparative Clinical Pathology, 24, 497-507. DOI: https://doi.org/10.1007/s00580-014-1930-x
Khoshbavar-Rostami, H. A., Soltani, M., & Hassan, H. M. D. (2006). Immune response of great sturgeon (Huso huso) subjected to long-term exposure to sublethal concentration of the organophosphate, diazinon. Aquaculture, 256(1-4), 88-94. DOI: https://doi.org/10.1016/j.aquaculture.2006.02.041
Khuman, S. N., Bharat, G., & Chakraborty, P. (2020). Spatial distribution and sources of pesticidal persistent organic pollutants in the Hooghly riverine sediment. Environmental Science and Pollution Research, 27, 4137-4147. DOI: https://doi.org/10.1007/s11356-019-06973-3
Lafferty, K. D., Harvell, C. D., Conrad, J. M., Friedman, C. S., Kent, M. L., Kuris, A. M., ... & Saksida, S. M. (2015). Infectious diseases affect marine fisheries and aquaculture economics. Annual Review of Marine Science, 7, 471-496. DOI: https://doi.org/10.1146/annurev-marine-010814-015646
Litman, G. W., Cannon, J. P., & Dishaw, L. J. (2005). Reconstructing immune phylogeny: new perspectives. Nature Reviews Immunology, 5(11), 866-879. DOI: https://doi.org/10.1038/nri1712
Liu, C. J., Men, W. J., Liu, Y. J., & Zhang, H. (2002). The pollution of pesticides in soils and its bioremediation. System Sciences and Comprehensive Studies in Agriculture, 18(4), 295-297.
Matthews, G. (2015). Pesticides: health, safety and the environment. John Wiley & Sons. DOI: https://doi.org/10.1002/9781118975923
Mostakim, G. M., Zahangir, M. M., Mishu, M. M., Rahman, M. K., & Islam, M. S. (2015). Alteration of Blood Parameters and Histoarchitecture of Liver and Kidney of Silver Barb after Chronic Exposure to Quinalphos. Journal of Toxicology, 415984 DOI: https://doi.org/10.1155/2015/415984
Mudiam, M. K. R., Pathak, S. P., Gopal, K., & Murthy, R. C. (2012). Studies on urban drinking water quality in a tropical zone. Environmental Monitoring and Assessment, 184, 461-469. DOI: https://doi.org/10.1007/s10661-011-1980-3
Muralidharan, S., Dhananjayan, V., & Jayanthi, P. (2009). Organochlorine pesticides in commercial marine fishes of Coimbatore, India and their suitability for human consumption. Environmental Research, 109(1), 15-21. DOI: https://doi.org/10.1016/j.envres.2008.08.006
Osuala, F. I., Abiodun, O. A., & Alebiosu, E. A. (2020). Contamination levels of organochlorine pesticides in Tympanotonus fuscatus and sediment of Lagos Lagoon, Nigeria. FUW Trends Science and Technology, 5(2), 552-556.
Pimentel, D. (1995). Amounts of pesticides reaching target pests: environmental impacts and ethics. Journal of Agricultural and Environmental Ethics, 8, 17-29. DOI: https://doi.org/10.1007/BF02286399
Qiu, Y. W., Qiu, H. L., Zhang, G., & Li, J. (2019). Bioaccumulation and cycling of organochlorine pesticides (OCPs) and polychlorinated biphenyls (PCBs) in three mangrove reserves of south China. Chemosphere, 217, 195-203. DOI: https://doi.org/10.1016/j.chemosphere.2018.10.188
Rahman, S. (2005). Environmental impacts of technological change in Bangladesh agriculture: farmers' perceptions, determinants, and effects on resource allocation decisions. Agricultural Economics, 33(1), 107-116. DOI: https://doi.org/10.1111/j.1574-0862.2005.00284.x
Ritchie, H., Roser, M. and Rosado, P. (2022). "Pesticides". Published online at OurWorldInData.org. Retrieved from: 'https://ourworldindata.org/pesticides' [Online Resource]
Rohani, M. F. (2023). Pesticides toxicity in fish: Histopathological and hemato-biochemical aspects–A review. Emerging Contaminants, 100234. DOI: https://doi.org/10.1016/j.emcon.2023.100234
Rossi, A. S., Fantón, N., Michlig, M. P., Repetti, M. R., & Cazenave, J. (2020). Fish inhabiting rice fields: Bioaccumulation, oxidative stress and neurotoxic effects after pesticides application. Ecological Indicators, 113, 106186. DOI: https://doi.org/10.1016/j.ecolind.2020.106186
Sabra, F. S., & Mehana, E. S. E. D. (2015). Pesticides toxicity in fish with particular reference to insecticides. Asian Journal of Agriculture and Food Sciences, 3(1).
Sabzevari, S., & Hofman, J. (2022). A worldwide review of currently used pesticides' monitoring in agricultural soils. Science of The Total Environment, 812, 152344. DOI: https://doi.org/10.1016/j.scitotenv.2021.152344
Shaikh, A., Ahmed, M.S., Roy, D., Sultana, Z., & Sarower, M.G. (2010) Effect of agricultural pesticide (Cypermethrin) on Labeo rohita. Khulna University Studies, 10 (1&2): 89–98.
Sharma, A., Kumar, V., Shahzad, B., Tanveer, M., Sidhu, G. P. S., Handa, N., ... & Thukral, A. K. (2019). Worldwide pesticide usage and its impacts on ecosystem. SN Applied Sciences, 1, 1-16. DOI: https://doi.org/10.1007/s42452-019-1485-1
Sharma, R., Jindal, R., & Faggio, C. (2021). Impact of cypermethrin in nephrocytes of freshwater fish Catla catla. Environmental Toxicology and Pharmacology, 88, 103739. DOI: https://doi.org/10.1016/j.etap.2021.103739
Shelley, L. K., Balfry, S. K., Ross, P. S., & Kennedy, C. J. (2009). Immunotoxicological effects of a sub-chronic exposure to selected current-use pesticides in rainbow trout (Oncorhynchus mykiss). Aquatic Toxicology, 92(2), 95-103. DOI: https://doi.org/10.1016/j.aquatox.2009.01.005
Shete, A., Gunale, V. R., & Pandit, G. G. (2009). Organochlorine pesticides in Avicennia marina from the Mumbai mangroves, India. Chemosphere, 76(11), 1483-1485. DOI: https://doi.org/10.1016/j.chemosphere.2009.06.055
Sinclair, C. J., & Boxall, A. B. (2003). Assessing the ecotoxicity of pesticide transformation products. Environmental Science and Technology, 37(20), 4617-4625. DOI: https://doi.org/10.1021/es030038m
Sitaramaraju, S., Prasad, N. V. V. S. D., Reddy, V. C., & Narayana, E. (2014). Impact of pesticides used for crop production on the environment. Journal of Chemical and Pharmaceutical Sciences, 3, 75-79.
Slaby, S., Le Cor, F., Dufour, V., Auger, L., Pasquini, L., Cardoso, O., ... & Banas, D. (2022). Distribution of pesticides and some of their transformation products in a small lentic waterbody: Fish, water, and sediment contamination in an agricultural watershed. Environmental Pollution, 292, 118403. DOI: https://doi.org/10.1016/j.envpol.2021.118403
Soltanian, S., & Fereidouni, M. S. (2017). Immunotoxic responses of chronic exposure to cypermethrin in common carp. Fish physiology and Biochemistry, 43, 1645-1655. DOI: https://doi.org/10.1007/s10695-017-0399-3
Tam, N. F. Y., Ke, L., Wang, X. H., & Wong, Y. S. (2001). Contamination of polycyclic aromatic hydrocarbons in surface sediments of mangrove swamps. Environmental Pollution, 114(2), 255-263. DOI: https://doi.org/10.1016/S0269-7491(00)00212-8
Tiwari, S., Tiwari, R., & Singh, A. (2012). Impact of cypermethrin on fingerlings of common edible carp (Labeo rohita). The Scientific World Journal, 2012. DOI: https://doi.org/10.1100/2012/291395
Uddin, M. H., Shahjahan, M., Amin, A. R., Haque, M. M., Islam, M. A., & Azim, M. E. (2016). Impacts of organophosphate pesticide, sumithion on water quality and benthic invertebrates in aquaculture ponds. Aquaculture Reports, 3, 88-92. DOI: https://doi.org/10.1016/j.aqrep.2016.01.002
Vali, S., Majidiyan, N., Azadikhah, D., Varcheh, M., Tresnakova, N., & Faggio, C. (2022). Effects of Diazinon on the survival, blood parameters, gills, and liver of grass carp (Ctenopharyngodon idella Valenciennes, 1844; Teleostei: Cyprinidae). Water, 14(9), 1357. DOI: https://doi.org/10.3390/w14091357
Vidal, J. M., Plaza-Bolaños, P., Romero-González, R., & Frenich, A. G. (2009). Determination of pesticide transformation products: A review of extraction and detection methods. Journal of Chromatography A, 1216(40), 6767-6788. DOI: https://doi.org/10.1016/j.chroma.2009.08.013
Wong, H. L., Giesy, J. P., & Lam, P. K. S. (2006). Organochlorine insecticides in mudflats of Hong Kong, China. Archives of Environmental Contamination and Toxicology, 50, 153-165. DOI: https://doi.org/10.1007/s00244-005-7001-1
Xie, J., Tao, L., Wu, Q., Bian, Z., Wang, M., Li, Y., ... & Lin, T. (2022). Bioaccumulation of organochlorine pesticides in Antarctic krill (Euphausia superba): Profile, influencing factors, and mechanisms. Journal of Hazardous Materials, 426, 128115. DOI: https://doi.org/10.1016/j.jhazmat.2021.128115
Xie, W., Zhao, J., Zhu, X., Chen, S., & Yang, X. (2022). Pyrethroid bioaccumulation in wild fish linked to geographic distribution and feeding habit. Journal of Hazardous Materials, 430, 128470. DOI: https://doi.org/10.1016/j.jhazmat.2022.128470
Yang, C., Lim, W., & Song, G. (2021). Immunotoxicological effects of insecticides in exposed fishes. Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology, 247, 109064. DOI: https://doi.org/10.1016/j.cbpc.2021.109064
Zhao, X., & Hwang, H. M. (2009). A study of the degradation of organophosphorus pesticides in river waters and the identification of their degradation products by chromatography coupled with mass spectrometry. Archives of Environmental Contamination and Toxicology, 56, 646-653. DOI: https://doi.org/10.1007/s00244-008-9220-8
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Khulna University Studies

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.