Impact of Alkali Post Deposition Treatment on Chalcogenide-based CIGSSe Solar Cells through Solution-based Method
DOI:
https://doi.org/10.53808/KUS.2025.22.01.1256-seKeywords:
CIGSSe; Thin Film; Post deposition treatment (PDT); Defect passivation.Abstract
Solution-based fabrication methods for high efficiency CIGSSe [Cu(In,Ga)(S,Se)2] solar cells have been extensively studied as the preference to vacuum-based fabrication methods. We employed an environmentally conscious solution-based deposition technique to fabricate thin films of CIGSSe. Despite significant research on non-vacuum (solution- processed) CIGSSe solar cells, compared to vacuum-based solar cells, their power conversion efficiency (PCE) remains lower. Additionally, numerous solvents employed in solution-based precursors are not environmentally friendly. We have developed a distinctive technology called solution-processed alkali (Sodium, Na) post-deposition treatment (PDT), which utilizes de-ionized (DI) water in ambient air. The presence of additional Na inclusions was found to significantly enhance the photovoltaic performance. The favorable effects of extra treatment were systematically investigated using several characterization approaches. Defect passivation had a positive impact, leading to PCE above 11% (in the absence of an anti-reflection coating layer).
Downloads
References
Bär, M., Bohne, W., Röhrich, J., Strub, E., Lindner, S., Lux-Steiner, M. C., Fischer, C. H., Niesen, T. P., & Karg, F. (2004). Determination of the band gap depth profile of the penternary Cu(In(1−X)GaX)(SYSe(1−Y))2 chalcopyrite from its composition gradient. Journal of Applied Physics, 96(7), 3857–3860.
Bob, B., Lei, B., Chung, C., Yang, W., Hsu, W., Duan, H., Hou, W. W., Li, S., & Yang, Y. (2012). The Development of Hydrazine‐Processed Cu(In,Ga)(Se,S)2 Solar Cells. Advanced Energy Materials, 2(5), 504–522.
Bodegard , M., Stolt, L., & Hedström, J. (1994). The influence of sodium on the grain structure of CuInSe_2 films for photovoltaic applications. Proc. 12th European Photovoltaic Solar Energy Conference, 1994, 1743–1746.
Chirilă, A., Reinhard, P., Pianezzi, F., Bloesch, P., Uhl, A. R., Fella, C., Kranz, L., Keller, D., Gretener, C., Hagendorfer, H., Jaeger, D., Erni, R., Nishiwaki, S., Buecheler, S., & Tiwari, A. N. (2013). Potassium-induced surface modification of Cu(In,Ga)Se2 thin films for high-efficiency solar cells. Nature Materials, 12(12), 1107–1111.
Contreras, M. A., Egaas, B., Dippo, P., Webb, J., Granata, J., Ramanathan, K.,& Noufi, R. (1997). On the role of Na and modifications to Cu (In, Ga) Se/sub 2/absorber materials using thin-MF (M= Na, K, Cs) precursor layers [solar cells]. In Conference Record of the Twenty Sixth IEEE Photovoltaic Specialists Conference-1997 (pp. 359-362).
Enkhbat, T., Enkhbayar, E., Otgontamir, N., Sharif, M. H., Mina, M. S., Kim, S. Y., & Kim, J. (2023). High efficiency CZTSSe solar cells enabled by dual Ag-passivation approach via aqueous solution process. Journal of Energy Chemistry, 77, 239–246.
Forest, R. V., Eser, E., McCandless, B. E., Chen, J. G., & Birkmire, R. W. (2015). Reversibility of (Ag,Cu)(In,Ga)Se2 electrical properties with the addition and removal of Na: Role of grain boundaries. Journal of Applied Physics, 117(11).
Granata, J. E., Sites, J. R., Asher, S., & Matson, R. J. (1997). Quantitative incorporation of sodium in CuInSe/sub 2/and Cu (In, Ga) Se/sub 2/photovoltaic devices. In Conference Record of the Twenty Sixth IEEE Photovoltaic Specialists Conference-1997 (pp. 387-390).
Han, S. H., Hasoon, F. S., Pankow, J. W., Hermann, A. M., & Levi, D. H. (2005). Effect of Cu deficiency on the optical bowing of chalcopyrite CuIn1−xGaxSe2. Applied Physics Letters, 87(15).
Hedstrom, J., Ohlsen, H., Bodegard, M., Kylner, A., Stolt, L., Hariskos, D., Ruckh, M., & Schock, H. W. (2002). ZnO/CdS/Cu(In,Ga)Se/sub 2/ thin film solar cells with improved performance.
Holz, J., Karg, F., & Philipsborn, H. V. (1994, April). The effect of substrate impurities on the electronic conductivity in CIS thin films. In Proceedings of the 12th european photovoltaic solar energy conference (pp. 1592-1595).
Ishizuka, S., Yamada, A., Islam, M. M., Shibata, H., Fons, P., Sakurai, T., Akimoto, K., & Niki, S. (2009). Na-induced variations in the structural, optical, and electrical properties of Cu(In,Ga)Se2 thin films. Journal of Applied Physics, 106(3).
Jung, D. Y., Jeong, Y. R., Mina, M. S., Lee, S. E., Enkhbayar, E., & Kim, J. (2022). Fabrication of in situ alkali doped flexible CIGSSe solar cells by using aqueous spray deposition. Current Applied Physics, 41, 66–72.
Kim, S., Mina, M. S., Lee, J., & Kim, J. (2019). Sulfur-Alloying Effects on Cu(In,Ga)(S,Se)2 Solar Cell Fabricated Using Aqueous Spray Pyrolysis. ACS Applied Materials & Interfaces, 11(49), 45702–45708.
Lee, T., Sharif, M. H., Enkhbayar, E., Enkhbat, T., Mina, M. S., & Kim, J. (2022). Defect Passivation for Kesterite CZTSSe Solar Cells via In Situ Al2O3 Incorporation into the Bulk CZTSSe Absorber. Solar RRL, 6(4).
Maeda, T., Kawabata, A., & Wada, T. (2015). First-principles study on alkali-metal effect of Li, Na, and K in CuInSe2and CuGaSe2. Japanese Journal of Applied Physics, 54(8S1), 08KC20.
Mina, M. S., Enkhbayar, E., Otgontamir, N., Kim, S., & Kim, J. (2023). Efficiency Improvement of Narrow Band Gap Cu(In,Ga)(S,Se)2 Solar Cell with Alkali Treatment via Aqueous Spray Pyrolysis Deposition. ACS Applied Materials & Interfaces, 15(19), 23199–23207.
Mina, M. S., Kim, S., Enkhbat, T., Enkhbayar, E., & Kim, J. (2022). High Efficiency Aqueous Solution Sprayed CIGSSe Solar Cells: Effects of Zr4+‐Alloyed In2S3 Buffer and K‐Alloyed CIGSSe Absorber. Advanced Functional Materials, 32(46).
Nakamura, M., Yamaguchi, K., Kimoto, Y., Yasaki, Y., Kato, T., & Sugimoto, H. (2019). Cd-Free Cu(In,Ga)(Se,S)2 Thin-Film Solar Cell With Record Efficiency of 23.35%. IEEE Journal of Photovoltaics, 9(6), 1863–1867.
Pianezzi, F., Reinhard, P., Chirilă, A., Bissig, B., Nishiwaki, S., Buecheler, S., & Tiwari, A. N. (2014). Unveiling the effects of post-deposition treatment with different alkaline elements on the electronic properties of CIGS thin film solar cells. Physical Chemistry Chemical Physics, 16(19), 8843.
Ramanujam, J., & Singh, U. P. (2017). Copper indium gallium selenide based solar cells – a review. Energy & Environmental Science, 10(6), 1306–1319.
Rudmann, D., Brémaud, D., Zogg, H., & Tiwari, A. N. (2005). Na incorporation into Cu(In,Ga)Se2 for high-efficiency flexible solar cells on polymer foils. Journal of Applied Physics, 97(8).
Rudmann, D., Da Cunha, A. F., Kaelin, M., Kurdesau, F., Zogg, H., Tiwari, A. N., & Bilger, G. (2004). Efficiency enhancement of Cu(In,Ga)Se2 solar cells due to post-deposition Na incorporation. Applied Physics Letters, 84(7), 1129–1131.
Salome, P. M. P., Hultqvist, A., Fjällström, V., Edoff, M., Aitken, B. G., Zhang, K., Fuller, K., & Williams, C. K. (2014). Incorporation of Na in Cu(In,Ga)Se2 Thin-Film Solar Cells: A Statistical Comparison Between Na From Soda-Lime Glass and From a Precursor Layer of NaF. IEEE Journal of Photovoltaics, 4(6), 1659–1664.
Wang, M., Hossain, M. A., & Choy, K. L. (2017). Effect of Sodium Treatment on the Performance of Electrostatic Spray Assisted Vapour Deposited Copper-poor Cu(In,Ga)(S,Se)2 Solar Cells. Scientific Reports, 7(1).
Wang, Y., Lv, S., & Li, Z. (2022). Review on incorporation of alkali elements and their effects in Cu(In,Ga)Se2 solar cells. Journal of Material Science and Technology, 96, 179–189.
Yuan, Z., Chen, S., Xie, Y., Park, J., Xiang, H., Gong, X., & Wei, S. (2016). Na‐Diffusion Enhanced p‐type Conductivity in Cu(In,Ga)Se2: A New Mechanism for Efficient Doping in Semiconductors. Advanced Energy Materials, 6(24).
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Khulna University Studies

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.