Real-Time BCI Scheme to Assisting Disabled Persons Using Motor Imagery EEG Signal Classification
DOI:
https://doi.org/10.53808/KUS.2025.22.01.1204-seKeywords:
Brain-computer interface (BCI), Neuro-robotics rehabilitation, Four-class motor imagery (MI), Wavelet Packet Decomposition (WPD), Artificial Neural Network (ANN)Abstract
Electroencephalography (EEG) signal-controlled Brain-computer interface (BCI) schemes have created hope for physically impaired people to lead a stress-free life. It is quite challenging to preprocess EEG signals and make them eligible for use in neuro-robotics applications as there exist various categories of artifacts in the raw EEG signal. As physically disabled people need to perform real-time actions, this study proposes a real-time BCI scheme that is usable and efficient for neuro-robotics applications in their rehabilitations. The ultimate goal is to classify hand, foot, and tongue motions as four-class motor imagery (MI) task-related impulses using the more efficient classification technique in this study. The proposed approach achieves state-of-the-art levels of accuracy and a kappa score of 77.41% and 0.70, respectively, on the benchmark dataset taken. Classifiers such as Skl-ANN, SVM, LDA, and others have been evaluated for the experimental subjects. It is believed that the higher classification accuracy and lower processing load of the proposed BCI system will make it acceptable for usage in real-world settings to facilitate the rehabilitation and reintegration of physically impaired persons.
Downloads
References
Alnaanah, M., Wahdow, M., & Alrashdan, M. (2022, July 13). CNN models for EEG motor imagery signal classification. Signal, Image and Video Processing, 17(3), 825–830.
Amin, S. U., Alsulaiman, M., Muhammad, G., Mekhtiche, M. A., & Hossain, M. S. (2019). Deep Learning for EEG motor imagery classification based on multi-layer CNNs feature fusion. Future Generation Computer Systems, 101, 542–554.
Ang, K. K., Chin, Z. Y., Wang, C., Guan, C., & Zhang, H. (2012). Filter Bank Common Spatial Pattern Algorithm on BCI Competition IV Datasets 2a and 2b. Frontiers in Neuroscience, 6.
Bashashati, H., Ward, R. K., Birch, G. E., & Bashashati, A. (2015b). Comparing Different Classifiers in Sensory Motor Brain Computer Interfaces. PLoS ONE, 10(6), e0129435.
Bhatti, M. H., Khan, J., Khan, M. U. G., Iqbal, R., Aloqaily, M., Jararweh, Y., & Gupta, B. (2019). Soft Computing-Based EEG Classification by Optimal Feature Selection and Neural Networks. IEEE Transactions on Industrial Informatics, 15(10), 5747–5754.
Brunner, C., Leeb, R., Müller-Putz, G., Schlögl, A., & Pfurtscheller, G. (2008). BCI Competition 2008–Graz data set A. Institute for knowledge discovery (laboratory of brain-computer interfaces), Graz University of Technology, 16, 1-6.
Chin, Z. Y., Ang, K. K., Wang, C., Guan, C., & Zhang, H. (2009). Multi-class filter bank common spatial pattern for four-class motor imagery BCI.
Dose, H., Møller, J. S., Iversen, H. K., & Puthusserypady, S. (2018). An end-to-end deep learning approach to MI-EEG signal classification for BCIs. Expert Systems With Applications, 114, 532–542.
Feng, J. K., Jin, J., Daly, I., Zhou, J., Niu, Y., Wang, X., & Cichocki, A. (2019). An Optimized Channel Selection Method Based on Multifrequency CSP-Rank for Motor Imagery-Based BCI System. Computational Intelligence and Neuroscience, 2019, 1–10.
Gao, L., Cheng, W., Zhang, J., & Wang, J. (2016). EEG classification for motor imagery and resting state in BCI applications using multi-class Adaboost extreme learning machine. Review of Scientific Instruments, 87(8).
Grosse-Wentrup, M., & Buss, M. (2008, August). Multiclass Common Spatial Patterns and Information Theoretic Feature Extraction. IEEE Transactions on Biomedical Engineering, 55(8), 1991–2000.
Hou, Y., Zhou, L., Jia, S., & Lun, X. (2020). A novel approach of decoding EEG four-class motor imagery tasks via scout ESI and CNN. Journal of Neural Engineering, 17(1), 016048.
Hu, Y., Liu, Y., Zhang, S., Zhang, T., Dai, B., Peng, B., Yang, H., & Dai, Y. (2023). A Cross-Space CNN With Customized Characteristics for Motor Imagery EEG Classification. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 31, 1554–1565.
Joyce, C. A., Gorodnitsky, I. F., & Kutas, M. (2003, December). Automatic removal of eye movement and blink artifacts from EEG data using blind component separation. Psychophysiology, 41(2), 313–325.
Kumar, S., Sharma, A., Mamun, K., & Tsunoda, T. (2016). A Deep Learning Approach for Motor Imagery EEG Signal Classification.
Lecun, Y., Bottou, L., Bengio, Y., & Haffner, P. (1998). Gradient-based learning applied to document recognition. Proceedings of the IEEE, 86(11), 2278–2324.
Ma, X., Chen, W., Pei, Z., Liu, J., Huang, B., & Chen, J. (2023). A Temporal Dependency Learning CNN With Attention Mechanism for MI-EEG Decoding. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 31, 3188–3200.
Nguyen, T., Hettiarachchi, I., Khosravi, A., Salaken, S. M., Bhatti, A., & Nahavandi, S. (2017, July). Multiclass EEG data classification using fuzzy systems. 2017 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE).
Olivas-Padilla, B. E., & Chacon-Murguia, M. I. (2019). Classification of multiple motor imagery using deep convolutional neural networks and spatial filters. Applied Soft Computing, 75, 461–472.
Pawan, N., & Dhiman, R. (2022). Motor imagery signal classification using Wavelet packet decomposition and modified binary grey wolf optimization. Measurement Sensors, 24, 100553.
Pfurtscheller, G., Brunner, C., Schlögl, A., & Da Silva, F. L. (2006). Mu rhythm (de)synchronization and EEG single-trial classification of different motor imagery tasks. NeuroImage, 31(1), 153–159.
Samar, V. J., Bopardikar, A., Rao, R., & Swartz, K. (1999). Wavelet Analysis of Neuroelectric Waveforms: A Conceptual Tutorial. Brain and Language, 66(1), 7–60.
Sarker, I. H. (2021). Deep Learning: A Comprehensive Overview on Techniques, Taxonomy, Applications and Research Directions. SN Computer Science, 2(6).
Schirrmeister, R. T., Springenberg, J. T., Fiederer, L. D. J., Glasstetter, M., Eggensperger, K., Tangermann, M., Hutter, F., Burgard, W., & Ball, T. (2017). Deep learning with convolutional neural networks for EEG decoding and visualization. Human Brain Mapping, 38(11), 5391–5420.
Tangermann, M., Müller, K. R., Aertsen, A., Birbaumer, N., Braun, C., Brunner, C., Leeb, R., Mehring, C., Miller, K. J., Müller-Putz, G. R., Nolte, G., Pfurtscheller, G., Preissl, H., Schalk, G., Schlögl, A., Vidaurre, C., Waldert, S., & Blankertz, B. (2012). Review of the BCI Competition IV. Frontiers in Neuroscience, 6.
Tong, L., Qian, Y., Peng, L., Wang, C., & Hou, Z. G. (2023, October 20). A learnable EEG channel selection method for MI-BCI using efficient channel attention. Frontiers in Neuroscience, 17.
Uktveris, T., & Jusas, V. (2017b). Application of Convolutional Neural Networks to Four-Class Motor Imagery Classification Problem. Information Technology and Control, 46(2).
Xu, B., Zhang, L., Song, A., Wu, C., Li, W., Zhang, D., Xu, G., Li, H., & Zeng, H. (2019). Wavelet Transform Time-Frequency Image and Convolutional Network-Based Motor Imagery EEG Classification. IEEE Access, 7, 6084–6093.
Xue, N. J. Z., Zhang, N. H., Zheng, N. C. X., & Yan, N. X. G. (2004c). Wavelet packet transform for feature extraction of EEG during mental tasks.
Yang, N. H., Sakhavi, S., Ang, N. K. K., & Guan, N. C. (2015). On the use of convolutional neural networks and augmented CSP features for multi-class motor imagery of EEG signals classification.
Yger, F., Berar, M., & Lotte, F. (2017b). Riemannian Approaches in Brain-Computer Interfaces: A Review. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 25(10), 1753–1762.
Yu, Z., Chen, W., & Zhang, T. (2022). Motor imagery EEG classification algorithm based on improved lightweight feature fusion network. Biomedical Signal Processing and Control, 75, 103618.
Zouch, W., & Echtioui, A. (2022). EEG Motor Imagery Classification using Fusion Convolutional Neural Network. Proceedings of the 14th International Conference on Agents and Artificial Intelligence.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Khulna University Studies

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.