Exploring AI Integration among Healthcare Professionals in Bangladesh: Opportunities, Challenges, and Ethical Concerns

Authors

  • Md. Rayhan Kabir Mass Communication and Journalism Discipline, Khulna University, Khulna-9208, Bangladesh

DOI:

https://doi.org/10.53808/KUS.2025.22.01.1239-ss

Keywords:

artificial intelligence, AI readiness, opportunities and challenges, healthcare information, future implications

Abstract

Artificial intelligence (AI) is significantly revolutionizing global healthcare systems by increasing diagnostic accuracy, optimizing treatment methods and improving patient outcomes. However, its effective integration in resource-constrained settings like Bangladesh presents challenges related to infrastructure, ethics, and professional preparedness. This research aimed to explore the perceptions of healthcare professionals in Bangladesh regarding the integration of AI in healthcare services, with a focus on identifying its opportunities, barriers, and ethical concerns. A qualitative research design was employed using semi-structured, in-depth interviews with 20 healthcare professionals conducted between January 1, 2023, and January 10, 2025. Participants included doctors, nurses, hospital administrators, and technology developers from five public and private medical institutions in Bangladesh based on specific inclusion criteria. The study involved participants who had limited knowledge about AI and healthcare professionals with at least two years of experience. These data were thematically analyzed using NVivo 14 software. The study identified five key themes and various subthemes. These themes are (I) AI and communication in a healthcare context, (II) Transformative potential of AI, (III) Barriers to AI adoption in healthcare, (IV) Ethical and legal considerations, and (V) Need for training & skill development. However, despite their limited knowledge of AI, participants expressed positive views regarding its potential to address challenges in Bangladesh’s healthcare sector, highlighting its capacity to enhance healthcare providers' efficiency, improve workflow, save time, and reduce medical errors.

Downloads

Download data is not yet available.

References

Abdullah, R., & Fakieh, B. (2020). Health care employees’ perceptions of the use of artificial intelligence applications: survey study. Journal of Medical Internet Research, 22(5), e17620. DOI: https://doi.org/10.2196/17620

Adil, M., Khan, M. K., Farouk, A., Jan, M. A., Anwar, A., & Jin, Z. (2024). AI-driven EEC for healthcare IoT: Security challenges and future research directions. IEEE Consumer Electronics Magazine, 13(1), 39-47. DOI: https://doi.org/10.1109/MCE.2022.3226585

Al Kuwaiti, A., Nazer, K., Al-Reedy, A., Al-Shehri, S., Al-Muhanna, A., Subbarayalu, A. V., Al Muhanna, D., & Al-Muhanna, F. A. (2023). A Review of the Role of Artificial Intelligence in Healthcare. Journal of Personalized Medicine, 13(6), Article 6. DOI: https://doi.org/10.3390/jpm13060951

Albahri, A., Duhaim, A. M., Fadhel, M. A., Alnoor, A., Baqer, N. S., Alzubaidi, L., Albahri, O., Alamoodi, A., Bai, J., Salhi, A., Santamaría, J., Ouyang, C., Gupta, A., Gu, Y., & Deveci, M. (2023). A systematic review of trustworthy and explainable artificial intelligence in healthcare: Assessment of quality, bias risk, and data fusion. Information Fusion, 96, 156–191. DOI: https://doi.org/10.1016/j.inffus.2023.03.008

Aradhya, S., Facio, F. M., Metz, H., Manders, T., Colavin, A., Kobayashi, Y., Nykamp, K., Johnson, B., & Nussbaum, R. L. (2023). Applications of artificial intelligence in clinical laboratory genomics. American Journal of Medical Genetics Part C Seminars in Medical Genetics, 193(3). DOI: https://doi.org/10.1002/ajmg.c.32057

Aung, Y. Y., Wong, D. C., & Ting, D. S. (2021). The promise of artificial intelligence: A review of the opportunities and challenges of artificial intelligence in healthcare. British Medical Bulletin, 139(1), 4-15. DOI: https://doi.org/10.1093/bmb/ldab016

Barrera, A., Gee, C., Wood, A., Gibson, O., Bayley, D., & Geddes, J. (2020). Introducing artificial intelligence in acute psychiatric inpatient care: Qualitative study of its use to conduct nursing observations. Evidence-Based Mental Health, 23(1), 34–38. DOI: https://doi.org/10.1136/ebmental-2019-300136

Bashshur, R., Doarn, C. R., Frenk, J. M., Kvedar, J. C., & Woolliscroft, J. O. (2020). Telemedicine and the COVID-19 Pandemic, lessons for the future. Telemedicine Journal and e-Health, 26(5), 571–573. DOI: https://doi.org/10.1089/tmj.2020.29040.rb

Belfrage, S., Helgesson, G., & Lynøe, N. (2022). Trust and digital privacy in healthcare: a cross-sectional descriptive study of trust and attitudes towards uses of electronic health data among the general public in Sweden. BMC Medical Ethics, 23(1). DOI: https://doi.org/10.1186/s12910-022-00758-z

Braun, V., & Clarke, V. (2006). Using thematic analysis in psychology. Qualitative Research in Psychology, 3(2), 77–101. DOI: https://doi.org/10.1191/1478088706qp063oa

Briganti, G., & Moine, O. L. (2020). Artificial intelligence in Medicine: Today and tomorrow. Frontiers in Medicine, 7. DOI: https://doi.org/10.3389/fmed.2020.00027

Chaurasia, A. (2023). Algorithmic Precision Medicine: Harnessing Artificial Intelligence for Healthcare Optimization. Asian Journal of Biotechnology and Bioresource Technology, 9(4), Article 4. DOI: https://doi.org/10.9734/ajb2t/2023/v9i4190

Chen, X., & Ryoo, J. (2025). Advancing AI in Healthcare through Professional Training: Insights from Chinese Practitioners. Scientia. Technology, Science and Society., 2(1), 95–110. DOI: https://doi.org/10.59324/stss.2025.2(1).08

Dangi, R. R., Sharma, A., & Vageriya, V. (2024). Transforming healthcare in Low‐Resource settings with Artificial intelligence: recent developments and outcomes. Public Health Nursing. DOI: https://doi.org/10.1111/phn.13500

Davenport, T., & Kalakota, R. (2019). The potential for artificial intelligence in healthcare. Future Healthcare Journal, 6(2), 94–98. DOI: https://doi.org/10.7861/futurehosp.6-2-94

Dwivedi, Y. K., Hughes, L., Ismagilova, E., Aarts, G., Coombs, C., Crick, T., Duan, Y., Dwivedi, R., Edwards, J., Eirug, A., Galanos, V., Ilavarasan, P. V., Janssen, M., Jones, P., Kar, A. K., Kizgin, H., Kronemann, B., Lal, B., Lucini, B., . . . Williams, M. D. (2019). Artificial Intelligence (AI): Multidisciplinary perspectives on emerging challenges, opportunities, and agenda for research, practice and policy. International Journal of Information Management, 57, 101994. DOI: https://doi.org/10.1016/j.ijinfomgt.2019.08.002

Eijkelboom, C., Brouwers, M., Frenkel, J., van Gurp, P., Jaarsma, D., de Jonge, R., Koksma, J., Mulder, D., Schaafsma, E., Sehlbach, C., Warmenhoven, F., Willemen, A., & de la Croix, A. (2023). Twelve tips for patient involvement in health professions education. Patient Education and Counseling, 106, 92–97. DOI: https://doi.org/10.1016/j.pec.2022.09.016

Ellahham, S., Ellahham, N., & Simsekler, M. C. E. (2020). Application of artificial intelligence in the health care safety context: opportunities and challenges. American Journal of Medical Quality, 35(4), 341–348. DOI: https://doi.org/10.1177/1062860619878515

Eshwar, M. S. (2023). Exploring the potential of artificial intelligence in healthcare: Possibilities and challenges. International Scientific Journal of Engineering and Management, 02(04). DOI: https://doi.org/10.55041/ISJEM00408

Esmaeilzadeh, P. (2024). Challenges and strategies for wide-scale artificial intelligence (AI) deployment in healthcare practices: A perspective for healthcare organizations. Artificial Intelligence in Medicine, 151, 102861. DOI: https://doi.org/10.1016/j.artmed.2024.102861

Fernandes, M., Vieira, S. M., Leite, F., Palos, C., Finkelstein, S., & Sousa, J. M. (2019). Clinical Decision Support Systems for Triage in the Emergency Department using Intelligent Systems: a Review. Artificial Intelligence in Medicine, 102, 101762. DOI: https://doi.org/10.1016/j.artmed.2019.101762

Frenk, J., Chen, L. C., Chandran, L., Groff, E. O. H., King, R., Meleis, A., & Fineberg, H. V. (2022). Challenges and opportunities for educating health professionals after the COVID-19 pandemic. The Lancet, 400(10362), 1539–1556. DOI: https://doi.org/10.1016/S0140-6736(22)02092-X

Gerke, S., Minssen, T., & Cohen, G. (2020). Chapter 12—Ethical and legal challenges of artificial intelligence-driven healthcare. In A. Bohr & K. Memarzadeh (Eds.), Artificial Intelligence in Healthcare (pp. 295–336). Academic Press. DOI: https://doi.org/10.1016/B978-0-12-818438-7.00012-5

Goirand, M., Austin, E., & Clay-Williams, R. (2021). Implementing Ethics in Healthcare AI-Based Applications: A Scoping Review. Science and Engineering Ethics, 27(5), 61. DOI: https://doi.org/10.1007/s11948-021-00336-3

Gupta, P., Maharaj, T., Weiss, M., Rahaman, N., Alsdurf, H., Minoyan, N., Harnois-Leblanc, S., Merckx, J., Williams, A., Schmidt, V., St-Charles, P., Patel, A., Zhang, Y., Buckeridge, D. L., Pal, C., Schölkopf, B., & Bengio, Y. (2023). Proactive contact tracing. PLOS Digital Health, 2(3), e0000199. DOI: https://doi.org/10.1371/journal.pdig.0000199

Harry, A. (2023). The future of medicine: Harnessing the power of AI for revolutionizing healthcare. International Journal of Multidisciplinary Sciences and Arts, 2(1), 36-47. DOI: https://doi.org/10.47709/ijmdsa.v2i1.2395

He, J., Baxter, S. L., Xu, J., Xu, J., Zhou, X., & Zhang, K. (2018). The practical implementation of artificial intelligence technologies in medicine. Nature Medicine, 25(1), 30–36. DOI: https://doi.org/10.1038/s41591-018-0307-0

Islam, A. (2025). Ethical challenges and opportunities in AI-Driven healthcare. Journal of AI-powered Medical Innovations., 3(1), 102–114. DOI: https://doi.org/10.60087/Japmi.Vol.03.Issue.01.Id.007

Karimian, G., Petelos, E., & Evers, S. M. A. A. (2022). The ethical issues of the application of artificial intelligence in healthcare: A systematic scoping review. AI and Ethics, 2(4), 539–551. DOI: https://doi.org/10.1007/s43681-021-00131-7

Khalid, J., Chuanmin, M., Altaf, F., Shafqat, M. M., Khan, S. K., & Ashraf, M. U. (2024). AI-Driven Risk Management and Sustainable Decision-Making: Role of perceived environmental responsibility. Sustainability, 16(16), 6799. DOI: https://doi.org/10.3390/su16166799

Khan, S. A. (2019). Situation analysis of health care system of Pakistan: Post 18 Amendments. Health Care Current Reviews, 07(03). DOI: https://doi.org/10.35248/2375-4273.19.07.244

Kiger, M. E., & Varpio, L. (2020). Thematic analysis of qualitative data: AMEE Guide No. 131. Medical Teacher, 42(8), 846–854. DOI: https://doi.org/10.1080/0142159X.2020.1755030

Konidena, B. K., Malaiyappan, J. N. A., & Tadimarri, A. (2024). Ethical Considerations in the Development and Deployment of AI Systems. European Journal of Technology, 8(2), Article 2. DOI: https://doi.org/10.47672/ejt.1890

Kumar, A., Mani, V., Jain, V., Gupta, H., & Venkatesh, V. G. (2023). Managing healthcare supply chain through artificial intelligence (AI): A study of critical success factors. Computers & Industrial Engineering, 175, 108815. DOI: https://doi.org/10.1016/j.cie.2022.108815

Lee, D., & Yoon, S. N. (2021). Application of Artificial Intelligence-Based Technologies in the Healthcare Industry: Opportunities and Challenges. International Journal of Environmental Research and Public Health, 18(1), Article 1. DOI: https://doi.org/10.3390/ijerph18010271

Lenz, R., & Reichert, M. (2007). IT support for healthcare processes – premises, challenges, perspectives. Data & Knowledge Engineering, 61(1), 39–58. DOI: https://doi.org/10.1016/j.datak.2006.04.007

Li, F., Ruijs, N., & Lu, Y. (2022). Ethics & AI: A Systematic Review on Ethical Concerns and Related Strategies for Designing with AI in Healthcare. AI, 4(1), 28–53. DOI: https://doi.org/10.3390/ai4010003

Li, Q., & Qin, Y. (2023). AI in medical education: medical student perception, curriculum recommendations and design suggestions. BMC Medical Education, 23(1). DOI: https://doi.org/10.1186/s12909-023-04700-8

Martinez, R. (2019). Artificial intelligence: Distinguishing between types & definitions. Nevada Law Journal, 19(3), 9. https://scholars.law.unlv.edu/cgi/viewcontent.cgi?article=1799&context=nlj

Martinez-Ortigosa, A., Martinez-Granados, A., Gil-Hernández, E., Rodriguez-Arrastia, M., Ropero-Padilla, C., & Roman, P. (2023). Applications of Artificial Intelligence in Nursing Care: A Systematic review. Journal of Nursing Management, 2023, 1–12. DOI: https://doi.org/10.1155/2023/3219127

Marwaha, J. S., Landman, A. B., Brat, G. A., Dunn, T., & Gordon, W. J. (2022). Deploying digital health tools within large, complex health systems: Key considerations for adoption and implementation. npj Digital Medicine, 5(1). DOI: https://doi.org/10.1038/s41746-022-00557-1

Maskara, R., Bhootra, V., Thakkar, D., & Nishkalank, N. (2017). A study on the perception of medical professionals towards artificial intelligence. International Journal of Multidisciplinary Research and Development, 4(4), 34–39.

Mirbabaie, M., Stieglitz, S., & Frick, N. R. J. (2021). Artificial intelligence in disease diagnostics: A critical review and classification on the current state of research guiding future direction. Health and Technology, 11(4), 693–731. DOI: https://doi.org/10.1007/s12553-021-00555-5

Mohanty, A., & Mishra, S. (2022). A Comprehensive Study of Explainable Artificial Intelligence in Healthcare. In S. Mishra, H. K. Tripathy, P. Mallick, & K. Shaalan (Eds.), Augmented Intelligence in Healthcare: A Pragmatic and Integrated Analysis, (pp. 475–502). Springer Nature. DOI: https://doi.org/10.1007/978-981-19-1076-0_25

Morley, J., Machado, C. C., Burr, C., Cowls, J., Joshi, I., Taddeo, M., & Floridi, L. (2020). The ethics of AI in health care: A mapping review. Social Science & Medicine, 260, 113172. DOI: https://doi.org/10.1016/j.socscimed.2020.113172

Murdoch, B. (2021). Privacy and artificial intelligence: Challenges for protecting health information in a new era. BMC Medical Ethics, 22(1), 122. DOI: https://doi.org/10.1186/s12910-021-00687-3

Murphy, K., Di Ruggiero, E., Upshur, R., Willison, D. J., Malhotra, N., Cai, J. C., Malhotra, N., Lui, V., & Gibson, J. (2021). Artificial intelligence for good health: A scoping review of the ethics literature. BMC Medical Ethics, 22(1). DOI: https://doi.org/10.1186/s12910-021-00577-8

Naik, N., Hameed, B. M. Z., Shetty, D. K., Swain, D., Shah, M., Paul, R., Aggarwal, K., Ibrahim, S., Patil, V., Smriti, K., Shetty, S., Rai, B. P., Chlosta, P., & Somani, B. K. (2022). Legal and ethical consideration in artificial intelligence in healthcare: Who takes responsibility? Frontiers in Surgery, 9. DOI: https://doi.org/10.3389/fsurg.2022.862322

Nash, D. M., Thorpe, C., Brown, J. B., Kueper, J. K., Rayner, J., Lizotte, D. J., Terry, A. L., & Zwarenstein, M. (2023). Perceptions of Artificial Intelligence Use in Primary Care: A Qualitative Study with Providers and Staff of Ontario Community Health Centres. The Journal of the American Board of Family Medicine, 36(2), 221–228. DOI: https://doi.org/10.3122/jabfm.2022.220177R2

Olugboja, A., & Agbakwuru, E. M. (2024). Bridging Healthcare Disparities in Rural Areas of Developing Countries: Leveraging Artificial Intelligence for Equitable Access. 2024 International Conference on Artificial Intelligence, Computer, Data Sciences and Applications (ACDSA), 1–6. DOI: https://doi.org/10.1109/ACDSA59508.2024.10467443

Petersson, L., Larsson, I., Nygren, J. M., Nilsen, P., Neher, M., Reed, J. E., Tyskbo, D., & Svedberg, P. (2022). Challenges to implementing artificial intelligence in healthcare: A qualitative interview study with healthcare leaders in Sweden. BMC Health Services Research, 22(1), 850. DOI: https://doi.org/10.1186/s12913-022-08215-8

Prakash, S., Balaji, J. N., Joshi, A., & Surapaneni, K. M. (2022). Ethical conundrums in the application of artificial intelligence (AI) in healthcare—A scoping review of reviews. Journal of Personalized Medicine, 12(11), 1914. DOI: https://doi.org/10.3390/jpm12111914

Racine, E., Boehlen, W., & Sample, M. (2019). Healthcare uses of artificial intelligence: Challenges and opportunities for growth. Healthcare Management Forum, 32(5), 272–275. DOI: https://doi.org/10.1177/0840470419843831

Radanliev, P., & De Roure, D. (2021). Epistemological and Bibliometric Analysis of Ethics and Shared Responsibility—Health Policy and IoT Systems. Sustainability, 13(15), Article 15. DOI: https://doi.org/10.3390/su13158355

Radanliev, P., & De Roure, D. (2022). Advancing the cybersecurity of the healthcare system with self-optimising and self-adaptative artificial intelligence (part 2). Health and Technology, 12(5), 923–929. DOI: https://doi.org/10.1007/s12553-022-00691-6

Radanliev, P., De Roure, D., Ani, U., & Carvalho, G. (2021). The ethics of shared Covid-19 risks: An epistemological framework for ethical health technology assessment of risk in vaccine supply chain infrastructures. Health and Technology, 11(5), 1083–1091. DOI: https://doi.org/10.1007/s12553-021-00565-3

Ramadan, O. M. E., Alruwaili, M. M., Alruwaili, A. N., Elsehrawy, M. G., & Alanazi, S. (2024). Facilitators and barriers to AI adoption in nursing practice: a qualitative study of registered nurses’ perspectives. BMC Nursing, 23(1). DOI: https://doi.org/10.1186/s12912-024-02571-y

Richardson, J. P., Smith, C., Curtis, S., Watson, S., Zhu, X., Barry, B., & Sharp, R. R. (2021). Patient apprehensions about the use of artificial intelligence in healthcare. Npj Digital Medicine, 4(1). DOI: https://doi.org/10.1038/s41746-021-00509-1

Rong, G., Mendez, A., Bou Assi, E., Zhao, B., & Sawan, M. (2020). Artificial Intelligence in Healthcare: Review and Prediction Case Studies. Engineering, 6(3), 291–301. DOI: https://doi.org/10.1016/j.eng.2019.08.015

Sapci, A. H., & Sapci, H. A. (2020). Artificial Intelligence Education and Tools for Medical and Health Informatics Students: Systematic Review. JMIR Medical Education, 6(1), e19285. DOI: https://doi.org/10.2196/19285

Saraswat, D., Bhattacharya, P., Verma, A., Prasad, V. K., Tanwar, S., Sharma, G., Bokoro, P. N., & Sharma, R. (2022). Explainable AI for Healthcare 5.0: Opportunities and Challenges. IEEE Access, 10, 84486–84517. IEEE Access. DOI: https://doi.org/10.1109/ACCESS.2022.3197671

Secinaro, S., Calandra, D., Secinaro, A., Muthurangu, V., & Biancone, P. (2021a). The role of artificial intelligence in healthcare: A structured literature review. BMC Medical Informatics and Decision Making, 21(1), 125.

Secinaro, S., Calandra, D., Secinaro, A., Muthurangu, V., & Biancone, P. (2021). The role of artificial intelligence in healthcare: a structured literature review. BMC Medical Informatics and Decision Making, 21(1). DOI: https://doi.org/10.1186/s12911-021-01488-9

Sheikh, H., Prins, C., & Schrijvers, E. (2023). Artificial intelligence: definition and background. In Research for policy (pp. 15–41). DOI: https://doi.org/10.1007/978-3-031-21448-6_2

Shinde, S. V., Medhane, D. V., & Castillo, O. (2023). Applied Computer Vision and Soft Computing with Interpretable AI. CRC Press. DOI: https://doi.org/10.1201/9781003359456

Slevin, P., Kessie, T., Cullen, J., Butler, M. W., Donnelly, S. C., & Caulfield, B. (2019). A qualitative study of chronic obstructive pulmonary disease patient perceptions of the barriers and facilitators to adopting digital health technology. Digital Health, 5, 205520761987172. DOI: https://doi.org/10.1177/2055207619871729

Stinson, C., & Vlaad, S. (2024). A feeling for the algorithm: Diversity, expertise, and artificial intelligence. Big Data & Society, 11(1). DOI: https://doi.org/10.1177/20539517231224247

Sun, L., Gupta, R. K., & Sharma, A. (2022). Review and potential for artificial intelligence in healthcare. International Journal of System Assurance Engineering and Management, 13(1), 54–62. DOI: https://doi.org/10.1007/s13198-021-01221-9

Thakur, G. K., Thakur, A., Kulkarni, S., Khan, N., & Khan, S. (2024). Deep learning approaches for medical image analysis and diagnosis. Cureus. DOI: https://doi.org/10.7759/cureus.59507

Topol, E. J. (2018). High-performance medicine: the convergence of human and artificial intelligence. Nature Medicine, 25(1), 44–56. DOI: https://doi.org/10.1038/s41591-018-0300-7

Triantafyllidis, A. K., & Tsanas, A. (2019). Applications of Machine Learning in Real-Life Digital Health Interventions: Review of the Literature. Journal of Medical Internet Research, 21(4), e12286. DOI: https://doi.org/10.2196/12286

Trocin, C., Mikalef, P., Papamitsiou, Z., & Conboy, K. (2023). Responsible AI for Digital Health: A Synthesis and a Research Agenda. Information Systems Frontiers, 25(6), 2139–2157. DOI: https://doi.org/10.1007/s10796-021-10146-4

van der Gaag, A., Jago, R., Gallagher, A., Stathis, K., Webster, M., & Austin, Z. (2023). Artificial Intelligence in Health Professions Regulation: An Exploratory Qualitative Study of Nurse Regulators in Three Jurisdictions. Journal of Nursing Regulation, 14(2), 10–17. DOI: https://doi.org/10.1016/S2155-8256(23)00087-X

Vimbi, V., Shaffi, N., & Mahmud, M. (2024). Interpreting artificial intelligence models: a systematic review on the application of LIME and SHAP in Alzheimer’s disease detection. Brain Informatics, 11(1). DOI: https://doi.org/10.1186/s40708-024-00222-1

Waymel, Q., Badr, S., Demondion, X., Cotten, A., & Jacques, T. (2019). Impact of the rise of artificial intelligence in radiology: What do radiologists think? Diagnostic and Interventional Imaging, 100(6), 327–336. DOI: https://doi.org/10.1016/j.diii.2019.03.015

Xue, V. W., Lei, P., & Cho, W. C. (2023). The potential impact of ChatGPT in clinical and translational medicine. Clinical and Translational Medicine, 13(3). DOI: https://doi.org/10.1002/ctm2.1216

Yang, X., Xiao, Y., Liu, D., Zhang, Y., Deng, H., Huang, J., Shi, H., Liu, D., Liang, M., Jin, X., Sun, Y., Yao, J., Zhou, X., Guo, W., He, Y., Tang, W., & Xu, C. (2025). Enhancing doctor-patient communication using large language models for pathology report interpretation. BMC Medical Informatics and Decision Making, 25(1). DOI: https://doi.org/10.1186/s12911-024-02838-z

Ye, Y., Pandey, A., Bawden, C., Sumsuzzman, D. M., Rajput, R., Shoukat, A., Singer, B. H., Moghadas, S. M., & Galvani, A. P. (2025). Integrating artificial intelligence with mechanistic epidemiological modeling: a scoping review of opportunities and challenges. Nature Communications, 16(1). DOI: https://doi.org/10.1038/s41467-024-55461-x

Yin, J., Ngiam, K. Y., & Teo, H. H. (2021). Role of Artificial Intelligence Applications in Real-Life Clinical Practice: Systematic review. Journal of Medical Internet Research, 23(4), e25759. DOI: https://doi.org/10.2196/25759

Yu, S., Kulkarni, V. G., & Deshpande, V. (2020). Appointment Scheduling for a Health Care Facility with Series Patients. Production and Operations Management, 29(2), 388–409. DOI: https://doi.org/10.1111/poms.13117

Yuliana, Y. (2023). Legal Consideration in Implementing Artificial Intelligence when Dealing with Patients in Healthcare Services. SAPIENTIA ET VIRTUS, 8(1), Article 1. DOI: https://doi.org/10.37477/sev.v8i1.416

Zahlan, A., Ranjan, R. P., & Hayes, D. (2023). Artificial intelligence innovation in healthcare: Literature review, exploratory analysis, and future research. Technology in Society, 74, 102321. DOI: https://doi.org/10.1016/j.techsoc.2023.102321

Zhongqi, H., & Jia, Z. C. (2022). Development and application of software testing under artificial intelligence, 21ks. Available at: https://www.21ks.net/lunwen/rgznlw/180797.html (Accessed March 24, 2024).

Downloads

Published

26-06-2025

How to Cite

[1]
M. R. Kabir, “Exploring AI Integration among Healthcare Professionals in Bangladesh: Opportunities, Challenges, and Ethical Concerns”, Khulna Univ. Stud., pp. 146–158, Jun. 2025.

Issue

Section

Social Sciences

Similar Articles

1 2 3 4 5 6 7 8 9 10 > >> 

You may also start an advanced similarity search for this article.