A SYSTEMATIC REVIEW ON CHEMICAL AND PHARMACOLOGICAL ACTIVITIES OF EXCOECARIA AGALLOCHA: A POTENTIAL SUNDARBAN PLANT

Authors

  • Shaikh Jamal Uddin Khulna University
  • Tasfiya Rufaidah Ahnaf Pharmacy Discipline, Khulna University
  • Pritam Sarkar Pharmacy Discipline, Khulna University
  • Md. Emam Shikdar Pharmacy Discipline, Khulna University
  • Sudipto Saha Shaheed Abu Nasar Specialized Hospital, Khulna

DOI:

https://doi.org/10.53808/KUS.2023.20.02.1092-ls

Keywords:

Excoecaria agallocha, Anti-epileptic property, Diterpenoids, Anti-inflammatory, cytotoxic,

Abstract

Among various plants in the Mangrove Forest of the tropical and subtropical region, E. agallocha is notable for possessing multifarious pharmacological activity. As E. agallocha belongs to the Euphoriaceae family, this plant is rich in many classes of phytochemicals that are therapeutically potent such as Diterpenoids, Triterpenoids, Alkaloids, Polyphenol, Sterol, Flavonoids, Tanine, Flavanone, etc. Its ancient use in the treatment of disorders such as epilepsy, rheumatism, ulcer, leprosy, and others has attracted the interest of researchers, who are now studying different parts of the plant. Plant parts have been studied for reducing inflammation, anti-microbial, anti-epileptic, and cytotoxic effects in several research. Phytoconstituents responsible for pharmacological activities have been distinguished and their possible mechanism of action along with IC₅₀ value has been presented. From wood, roots, and stems of the plant physiologically active constituents such as Agallochin, ent-kauran-16â-ol-3-one, Chebulagic acid, Betulinic acid, Betulonic acid, Corilagin, Geraniin, Excoecarin, Agallochaexcoerin, Vanillic acid are described as pharmacologically potent molecules as they interact with certain biomolecules and precipitate changes in the physiological state of the body. This review is elucidating the likely mechanism of action of each of these plant compounds that provide particular biological activity.

Downloads

Download data is not yet available.

References

Abdel-Raouf, N., Al-Enazi, N. M., Al-Homaidan, A. A., Ibraheem, I. B. M., Al-Othman, M. R., & Hatamleh, A. A. (2015). Antibacterial β-amyrin isolated from Laurencia microcladia. Arabian Journal of Chemistry, 8(1), 32-37. doi:https://doi.org/10.1016/j.arabjc.2013.09.033 DOI: https://doi.org/10.1016/j.arabjc.2013.09.033

Abidi, A. (2014). Hedgehog signaling pathway: a novel target for cancer therapy: vismodegib, a promising therapeutic option in treatment of basal cell carcinomas. Indian J Pharmacol, 46(1), 3-12. doi:10.4103/0253-7613.124884 DOI: https://doi.org/10.4103/0253-7613.124884

Aboaba, O. O., Smith, S. I., & F.O.Olude, J. P. J. o. N. (2006). Antibacterial Effect of Edible Plant Extract on Escherichia coli 0157:H7. 5, 325-327. DOI: https://doi.org/10.3923/pjn.2006.325.327

Anjaneyulu, A. S., & Rao, V. L. (2000). Five diterpenoids (agallochins A-E) from the mangrove plant Excoecaria agallocha Linn. Phytochemistry, 55(8), 891-901. doi:10.1016/s0031-9422(00)00251-x DOI: https://doi.org/10.1016/S0031-9422(00)00251-X

Anjaneyulu, A. S., Rao, V. L., & Sreedhar, K. (2002). ent-Kaurane and beyerane diterpenoids from Excoecaria agallocha. J Nat Prod, 65(3), 382-385. doi:10.1021/np010262u DOI: https://doi.org/10.1021/np010262u

Anjaneyulu, A. S., Rao, V. L., & Sreedhar, K. (2003). Agallochins J-L, new isopimarane diterpenoids from Excoecaria agallocha L. Nat Prod Res, 17(1), 27-32. doi:10.1080/1057563021000027975 DOI: https://doi.org/10.1080/1057563021000027975

Anjaneyulu, A. S. R., & Lakshmana Rao, V. (2003). Seco diterpenoids from Excoecaria agallocha L. Phytochemistry, 62(4), 585-589. doi:https://doi.org/10.1016/S0031-9422(02)00269-8 DOI: https://doi.org/10.1016/S0031-9422(02)00269-8

Anjaneyulu, V., Suresh Babu, J., Hari Babu, B., & Reddy, M. J. A. C. I. C. (1993). Terpenoids from a mangrove, Excoecaria agallocha. 19, 125-125.

Arumugam, M., Pawar, U. R., Gomathinayagam, M., Lakshmanan, G. M. A., & Panneerselvam, R. (2012). Antibacterial and antioxidant activity between micropropagated and field grown plants of Excoecaria agallocha L.

Babuselvam, M., Ravikumar, S., Farook, K. M., Abideen, S., Mohamed, M. P., & Uthiraselvam, M. J. J. o. A. P. S. (2012). Evaluation of anti-inflammatory and analgesic effects on the extracts of different parts of Excoecaria agallocha L. 2(9), 108-112. DOI: https://doi.org/10.7324/JAPS.2012.2921

Bai, X., Pan, R., Li, M., Li, X., & Zhang, H. (2019). HPLC Profile of Longan (cv. Shixia) Pericarp-Sourced Phenolics and Their Antioxidant and Cytotoxic Effects. Molecules, 24(3). doi:10.3390/molecules24030619 DOI: https://doi.org/10.3390/molecules24030619

Borges, A., Ferreira, C., Saavedra, M. J., & Simões, M. J. M. d. r. (2013). Antibacterial activity and mode of action of ferulic and gallic acids against pathogenic bacteria. 19(4), 256-265. DOI: https://doi.org/10.1089/mdr.2012.0244

Chama, M. A., Dziwornu, G. A., Popli, E., Mas-Claret, E., Egyir, B., Ayine-Tora, D. M., . . . Bender, A. (2023). Antimicrobial and in silico studies of the triterpenoids of Dichapetalum albidum. Heliyon, 9(7), e18299. doi:https://doi.org/10.1016/j.heliyon.2023.e18299 DOI: https://doi.org/10.1016/j.heliyon.2023.e18299

Chan, E. W. C., Oshiro, N., Kezuka, M., Kimura, N., Baba, K., & Chan, H. T. J. J. o. A. P. S. (2018). Pharmacological potentials and toxicity effects of Excoecaria agallocha. 8(5), 166-173. DOI: https://doi.org/10.7324/JAPS.2018.8523

Deng, Y., Li, X., Li, X., Zheng, Z., Huang, W., Chen, L., . . . Ming, Y. (2018). Corilagin induces the apoptosis of hepatocellular carcinoma cells through the mitochondrial apoptotic and death receptor pathways. Oncol Rep, 39(6), 2545-2552. doi:10.3892/or.2018.6396 DOI: https://doi.org/10.3892/or.2018.6396

García-Niño, W. R., & Zazueta, C. (2015). Ellagic acid: Pharmacological activities and molecular mechanisms involved in liver protection. Pharmacological Research, 97, 84-103. doi:https://doi.org/10.1016/j.phrs.2015.04.008 DOI: https://doi.org/10.1016/j.phrs.2015.04.008

Gowri, P. M., Bhattar, S. V. S. R., Reddy, P. G., Rakesh, Y., Basha, S. J., Sarma, A. V. S., & Rao, J. M. J. H. c. a. (2009). Three New ent‐Labdane Diterpenoids from the Wood of Excoecaria agallocha Linn. 92(7), 1419-1427. DOI: https://doi.org/10.1002/hlca.200800448

Gu, Y., Xiao, L., Ming, Y., Zheng, Z., & Li, W. (2016). Corilagin suppresses cholangiocarcinoma progression through Notch signaling pathway in vitro and in vivo. Int J Oncol, 48(5), 1868-1876. doi:10.3892/ijo.2016.3413 DOI: https://doi.org/10.3892/ijo.2016.3413

Guzman, J. D., Gupta, A., Bucar, F., Gibbons, S., & Bhakta, S. J. F. i. B.-L. (2012). Antimycobacterials from natural sources: ancient times, antibiotic era and novel scaffolds. 17(5), 1861-1881. DOI: https://doi.org/10.2741/4024

Holder, S., Zemskova, M., Zhang, C., Tabrizizad, M., Bremer, R., Neidigh, J. W., & Lilly, M. B. J. M. c. t. (2007). Characterization of a potent and selective small-molecule inhibitor of the PIM1 kinase. 6(1), 163-172. DOI: https://doi.org/10.1158/1535-7163.MCT-06-0397

Huang, J., Xu, J., Wang, Z., Khan, D., Niaz, S. I., Zhu, Y., . . . Liu, L. (2017). New lasiodiplodins from mangrove endophytic fungus Lasiodiplodia sp. 318(). Nat Prod Res, 31(3), 326-332. doi:10.1080/14786419.2016.1239096 DOI: https://doi.org/10.1080/14786419.2016.1239096

Iida, A., Usui, T., Zar Kalai, F., Han, J., Isoda, H., Nagumo, Y. J. B., Biotechnology,, & Biochemistry. (2015). Protective effects of Nitraria retusa extract and its constituent isorhamnetin against amyloid β-induced cytotoxicity and amyloid β aggregation. 79(9), 1548-1551. DOI: https://doi.org/10.1080/09168451.2015.1027655

Jahan, I. A., Hossain, H., Akbar, P., Rahman, M., Khan, T., Rahman, S. E., & Siraj, M. A. (2014). Antioxidant Properties and HPLC Assay of Bioactive Polyphenols of the Ethanol Extract of Excoecaria agallocha Stem Bark Growing in Bangladesh. British Journal of Pharmaceutical Research, 4, 2116-2125. doi:10.9734/BJPR/2014/12425 DOI: https://doi.org/10.9734/BJPR/2014/12425

Jia, L., Jin, H., Zhou, J., Chen, L., Lu, Y., Ming, Y., & Yu, Y. (2013). A potential anti-tumor herbal medicine, Corilagin, inhibits ovarian cancer cell growth through blocking the TGF-β signaling pathways. BMC Complement Altern Med, 13, 33. doi:10.1186/1472-6882-13-33 DOI: https://doi.org/10.1186/1472-6882-13-33

Jiang, Z. P., Zou, B. H., Li, X. J., Liu, J. J., Shen, L., & Wu, J. (2019). Ent-kauranes from the Chinese Excoecaria agallocha L. and NF-κB inhibitory activity. Fitoterapia, 133, 159-170. doi:10.1016/j.fitote.2019.01.007 DOI: https://doi.org/10.1016/j.fitote.2019.01.007

Kang, J., Chen, R.-Y., & Yu, D.-Q. (2005). A new isopimarane-type diterpene and a new natural atisane-type diterpene from Excoecaria agallocha. Journal of Asian Natural Products Research, 7(5), 729-734. doi:10.1080/1028602042000324943 DOI: https://doi.org/10.1080/1028602042000324943

Karalai, C., Wiriyachitra, P., Opferkuch, H. J., & Hecker, E. (1994). Cryptic and free skin irritants of the daphnane and tigliane types in latex of Excoecaria agallocha. Planta Med, 60(4), 351-355. doi:10.1055/s-2006-959499 DOI: https://doi.org/10.1055/s-2006-959499

Kim, H. J., Kim, J., Kang, K. S., Lee, K. T., & Yang, H. O. (2014). Neuroprotective Effect of Chebulagic Acid via Autophagy Induction in SH-SY5Y Cells. Biomol Ther (Seoul), 22(4), 275-281. doi:10.4062/biomolther.2014.068 DOI: https://doi.org/10.4062/biomolther.2014.068

Kim, J.-E., Kwon, J. Y., Lee, D. E., Kang, N. J., Heo, Y.-S., Lee, K. W., & Lee, H. J. J. B. p. (2009). MKK4 is a novel target for the inhibition of tumor necrosis factor-α-induced vascular endothelial growth factor expression by myricetin. 77(3), 412-421. DOI: https://doi.org/10.1016/j.bcp.2008.10.027

Kim, J.-E., Lee, D.-E., Lee, K. W., Son, J. E., Seo, S. K., Li, J., . . . Bode, A. M. (2011). Isorhamnetin suppresses skin cancer through direct inhibition of MEK1 and PI3-K. Cancer Prevention Research, 4(4), 582-591. DOI: https://doi.org/10.1158/1940-6207.CAPR-11-0032

Ko, C.-H., Shen, S.-C., Lee, T. J., & Chen, Y.-C. J. M. c. t. (2005). Myricetin inhibits matrix metalloproteinase 2 protein expression and enzyme activity in colorectal carcinoma cells. 4(2), 281-290. DOI: https://doi.org/10.1158/1535-7163.281.4.2

Konishi, T., Azuma, M., Itoga, R., Kiyosawa, S., Fujiwara, Y., & Shimada, Y. (2010). ChemInform Abstract: Three New Labdane-Type Diterpenes from Wood, Excoecaria agallocha. Cheminform, 27. doi:10.1002/chin.199630223 DOI: https://doi.org/10.1002/chin.199630223

Konishi, T., Azuma, M., Itoga, R. S., Kiyosawa, S., Fujiwara, Y., Shimada, Y. J. C., & Bulletin, P. (1996). Three New Labdane-Type Diterpenes from Wood, Excoecaria agallocha. 44, 229-231. DOI: https://doi.org/10.1248/cpb.44.229

Konishi, T., Kiyosawa, S., Konoshima, T., & Fujiwara, Y. (1996). Chemical Structures of Excoecarins A, B and C : Three New Labdane-Type Diterpenes from Wood, Excoecaria agallocha. CHEMICAL & PHARMACEUTICAL BULLETIN, 44(11), 2100-2102. doi:10.1248/cpb.44.2100 DOI: https://doi.org/10.1248/cpb.44.2100

Konishi, T., Konoshima, T., Fujiwara, Y., & Kiyosawa, S. (1998). Stereostructure of Excoecarin H, a Novel seco-Labdane-Type Diterpene from Excoecaria agallocha. CHEMICAL & PHARMACEUTICAL BULLETIN, 46(4), 721-722. doi:10.1248/cpb.46.721 DOI: https://doi.org/10.1248/cpb.46.721

Konishi, T., Konoshima, T., Fujiwara, Y., & Kiyosawa, S. (2000). Excoecarins D, E, and K, from excoecaria agallocha. J Nat Prod, 63(3), 344-346. doi:10.1021/np990366t

Konishi, T., Konoshima, T., Fujiwara, Y., Kiyosawa, S., Miyahara, K., Nishi, M. J. C., & bulletin, p. (1999). Stereostructures of new labdane-type diterpenes, excoecarins F, G1, and G2 from the wood of Excoecaria agallocha. 47(3), 456-458. DOI: https://doi.org/10.1248/cpb.47.456

Konishi, T., Konoshima, T., Fujiwara, Y., & Kiyosawa, S. J. J. o. n. p. (2000). Excoecarins D, E, and K, from Excoecaria agallocha. 63(3), 344-346. DOI: https://doi.org/10.1021/np990366t

Konishi, T., Konoshima, T., Maoka, T., & Fujiwara, Y. J. T. l. (2000). Novel diterpenes, excoecarins M and N from the resinous wood of Excoecaria agallocha. 41(18), 3419-3422. DOI: https://doi.org/10.1016/S0040-4039(00)00391-9

Konishi, T., Takasaki, M., Tokuda, H., Kiyosawa, S., Konoshima, T. J. B., & Bulletin, P. (1998). Anti-tumor-promoting activity of diterpenes from Excoecaria agallocha. 21(9), 993-996. DOI: https://doi.org/10.1248/bpb.21.993

Konishi, T., Yamazoe, K., Kanzato, M., Konoshima, T., & Fujiwara, Y. (2003). Three Diterpenoids (Excoecarins V1—V3) and a Flavanone Glycoside from the Fresh Stem of Excoecaria agallocha. Chemical and Pharmaceutical Bulletin, 51(10), 1142-1146. doi:10.1248/cpb.51.1142 DOI: https://doi.org/10.1248/cpb.51.1142

Konishi, T., Yamazoe, K., Konoshima, T., & Fujiwara, Y. (2003). Seco-labdane type diterpenes from Excoecaria agallocha. Phytochemistry, 64(4), 835-840. doi:https://doi.org/10.1016/j.phytochem.2003.09.001 DOI: https://doi.org/10.1016/j.phytochem.2003.09.001

Konishi, T., Yamazoe, K., Konoshima, T., Maoka, T., Fujiwara, Y., & Miyahara, K. (2003). New bis-secolabdane diterpenoids from Excoecaria agallocha. J Nat Prod, 66(1), 108-111. doi:10.1021/np020321j DOI: https://doi.org/10.1021/np020321j

Koren, J., Jinwal, U. K., Jin, Y., O’Leary, J., Jones, J. R., Johnson, A. G., . . . Miyata, Y. J. J. o. b. c. (2010). Facilitating Akt clearance via manipulation of Hsp70 activity and levels. 285(4), 2498-2505. DOI: https://doi.org/10.1074/jbc.M109.057208

Laith, A. A., Najiah, M. J. J. o. M., & Antimicrobials. (2014). Antimicrobial activities of blinding tree, Excoecaria agallocha against selected bacterial pathogens. 6(2), 29-36. DOI: https://doi.org/10.5897/JMA2013.0291

Li, C., Yang, X., Chen, C., Cai, S., & Hu, J. (2014). Isorhamnetin suppresses colon cancer cell growth through the PI3K‑Akt‑mTOR pathway. Molecular medicine reports, 9(3), 935-940. DOI: https://doi.org/10.3892/mmr.2014.1886

Li, X., Lei, J., Zheng, Y., Sattler, I., & Lin, W. J. C. R. i. C. U. (2007). New ent-Isopimarane Diterpene from Mangrove Excoecaria agallocha L. 23, 541-543. DOI: https://doi.org/10.1016/S1005-9040(07)60118-4

Li, Y., Liu, J., Yu, S., Proksch, P., Gu, J., & Lin, W. (2010). TNF-α inhibitory diterpenoids from the Chinese mangrove plant Excoecaria agallocha L. Phytochemistry, 71(17-18), 2124-2131. doi:10.1016/j.phytochem.2010.08.011 DOI: https://doi.org/10.1016/j.phytochem.2010.08.011

Li, Y., Yu, S., Liu, D., Proksch, P., & Lin, W. (2012). Inhibitory effects of polyphenols toward HCV from the mangrove plant Excoecaria agallocha L. Bioorg Med Chem Lett, 22(2), 1099-1102. doi:10.1016/j.bmcl.2011.11.109 DOI: https://doi.org/10.1016/j.bmcl.2011.11.109

Lin, L.-T., Chen, T.-Y., Lin, S.-C., Chung, C.-Y., Lin, T.-C., Wang, G.-H., . . . Richardson, C. D. (2013). Broad-spectrum antiviral activity of chebulagic acid and punicalagin against viruses that use glycosaminoglycans for entry. BMC Microbiology, 13(1), 187. doi:10.1186/1471-2180-13-187 DOI: https://doi.org/10.1186/1471-2180-13-187

Liu, Z., Jiang, W., Deng, Z., & Lin, W. J. J. C. P. S. (2010). Assignment of the absolute stereochemistry of an unusual diterpenoid from the mangrove plant Excoecaria agallocha L. 19, 387-392. DOI: https://doi.org/10.5246/jcps.2010.05.053

Medeiros, R., Otuki, M. F., Avellar, M. C., & Calixto, J. B. (2007). Mechanisms underlying the inhibitory actions of the pentacyclic triterpene alpha-amyrin in the mouse skin inflammation induced by phorbol ester 12-O-tetradecanoylphorbol-13-acetate. Eur J Pharmacol, 559(2-3), 227-235. doi:10.1016/j.ejphar.2006.12.005 DOI: https://doi.org/10.1016/j.ejphar.2006.12.005

Milani, R., Brognara, E., Fabbri, E., Finotti, A., Borgatti, M., Lampronti, I., . . . Gambari, R. (2018). Corilagin Induces High Levels of Apoptosis in the Temozolomide-Resistant T98G Glioma Cell Line. Oncol Res, 26(9), 1307-1315. doi:10.3727/096504017x14928634401187 DOI: https://doi.org/10.3727/096504017X14928634401187

Ming, Y., Zheng, Z., Chen, L., Zheng, G., Liu, S., Yu, Y., & Tong, Q. (2013). Corilagin inhibits hepatocellular carcinoma cell proliferation by inducing G2/M phase arrest. Cell Biol Int, 37(10), 1046-1054. doi:10.1002/cbin.10132 DOI: https://doi.org/10.1002/cbin.10132

Mo, D.-J., Li, J., & Li, M.-Y. (2018). A New 28-Nor-oleanane Triterpene from Excoecaria agallocha. Natural Product Communications, 13(1), 1934578X1801300107. doi:10.1177/1934578X1801300107 DOI: https://doi.org/10.1177/1934578X1801300107

Moghaddam, M. (2012). Biological Activity of Betulinic Acid: A Review. Pharmacology & Pharmacy, 03, 119-123. doi:10.4236/pp.2012.32018 DOI: https://doi.org/10.4236/pp.2012.32018

Mondal, S., Ghosh, D., & Ramakrishna, K. (2016). A Complete Profile on Blind-your-eye Mangrove Excoecaria Agallocha L. (Euphorbiaceae): Ethnobotany, Phytochemistry, and Pharmacological Aspects. Pharmacogn Rev, 10(20), 123-138. doi:10.4103/0973-7847.194049 DOI: https://doi.org/10.4103/0973-7847.194049

Otuki, M. F., Vieira-Lima, F., Malheiros, A., Yunes, R. A., & Calixto, J. B. (2005). Topical antiinflammatory effects of the ether extract from Protium kleinii and alpha-amyrin pentacyclic triterpene. Eur J Pharmacol, 507(1-3), 253-259. doi:10.1016/j.ejphar.2004.11.012 DOI: https://doi.org/10.1016/j.ejphar.2004.11.012

Park, K.-S., Chong, Y., & Kim, M. K. (2016). Myricetin: biological activity related to human health. Applied Biological Chemistry, 59(2), 259-269. doi:10.1007/s13765-016-0150-2 DOI: https://doi.org/10.1007/s13765-016-0150-2

Patra, J. K., Panigrahi, T. K., Rath, S., Dhal, N. K., & Thatoi, H. J. A. N. A. S. (2009). Phytochemical screening and antimicrobial assessment of leaf extracts of Excoecaria agallocha L.: a mangal species of Bhitarkanika, Orissa, India. 3(2), 241-246.

Phillips, P., Sangwan, V., Borja-Cacho, D., Dudeja, V., Vickers, S., & Saluja, A. J. C. l. (2011). Myricetin induces pancreatic cancer cell death via the induction of apoptosis and inhibition of the phosphatidylinositol 3-kinase (PI3K) signaling pathway. 308(2), 181-188. DOI: https://doi.org/10.1016/j.canlet.2011.05.002

Prakash, S., Khan, M. A., Khan, H., & Zaman, A. J. P. (1983). A piperidine alkaloid from Excoecharia agallocha. 22(8), 1836-1837. DOI: https://doi.org/10.1016/S0031-9422(00)80288-5

Prathiba, S., Rajagopal, P., Jayaraman, S., P, M., Mahendra, J., & Kasturi, R. (2021). A Review on Therapeutic Perspectives of Anticancer Properties of Chebulagic Acid. 8, 7598-7612.

Puapairoj, P., Naengchomnong, W., Kijjoa, A., Pinto, M. M., Pedro, M., Nascimento, M. S. J., . . . Herz, W. J. P. m. (2005). Cytotoxic activity of lupane-type triterpenes from Glochidion sphaerogynum and Glochidion eriocarpum two of which induce apoptosis. 71(03), 208-213. DOI: https://doi.org/10.1055/s-2005-837818

Qiu, F., Liu, L., Lin, Y., Yang, Z., & Qiu, F. J. A.-C. A. i. M. C. (2019). Corilagin inhibits esophageal squamous cell carcinoma by inducing DNA damage and down-regulation of RNF8. 19(8), 1021-1028. DOI: https://doi.org/10.2174/1871520619666190307120811

Raghavanpillai Sabu, K., Sugathan, S., Idhayadhulla, A., Woldemariam, M., Aklilu, A., Biresaw, G., . . . Manilal, A. (2022). Antibacterial, Antifungal, and Cytotoxic Activity of Excoecaria agallocha Leaf Extract. Journal of Experimental Pharmacology, 14, 17-26. doi:10.2147/JEP.S339383 DOI: https://doi.org/10.2147/JEP.S339383

Rajeswari, K., & Bhaskara-Rao, T. J. J. C. P. R. (2015). Excoecaria agallocha Linn (Euphrobiaceae): An overview. 7(10), 423-439.

Rifai, Y., Arai, M. A., Sadhu, S. K., Ahmed, F., & Ishibashi, M. (2011). New Hedgehog/GLI signaling inhibitors from Excoecaria agallocha. Bioorg Med Chem Lett, 21(2), 718-722. doi:10.1016/j.bmcl.2010.11.126 DOI: https://doi.org/10.1016/j.bmcl.2010.11.126

Romero-Estrada, A., Maldonado-Magaña, A., González-Christen, J., Bahena, S. M., Garduño-Ramírez, M. L., Rodríguez-López, V., & Alvarez, L. (2016). Anti-inflammatory and antioxidative effects of six pentacyclic triterpenes isolated from the Mexican copal resin of Bursera copallifera. BMC Complementary and Alternative Medicine, 16(1), 422. doi:10.1186/s12906-016-1397-1 DOI: https://doi.org/10.1186/s12906-016-1397-1

Selvaraj, G., Kaliamurthi, S., Ramanathan, Vivekanandan, L., & Thangavel, B. (2014). Anti-Nociceptive Effect in Mice of Thillai Flavonoid Rutin. Biomed Environ Sci, 27, 295-299. doi:10.3967/bes2014.052

Selvaraj, G., Kaliamurthi, S., Thirungnasambandam, R., Vivekanandan, L., & Balasubramanian, T. (2014). Anti-nociceptive effect in mice of thillai flavonoid rutin. Biomed Environ Sci, 27(4), 295-299. doi:10.3967/bes2014.052

Shelar, M. K., Patil, M. J., Bhujbal, S. S., & Chaudhari, R. B. (2018). Evaluation of anticonvulsant activity of the ethanolic extracts from leaves of Excoecaria agallocha. Future Journal of Pharmaceutical Sciences, 4(2), 215-219. doi:https://doi.org/10.1016/j.fjps.2018.06.002 DOI: https://doi.org/10.1016/j.fjps.2018.06.002

Shi, X., Xu, M., Luo, K., Huang, W., Yu, H., & Zhou, T. (2019). Anticancer activity of bergenin against cervical cancer cells involves apoptosis, cell cycle arrest, inhibition of cell migration and the STAT3 signalling pathway Retraction in /10.3892/etm.2021.10085. Exp Ther Med, 17(5), 3525-3529. doi:10.3892/etm.2019.7380 DOI: https://doi.org/10.3892/etm.2019.7380

Silveira, D., & Boylan, F. (2023). Medicinal Plants: Advances in Phytochemistry and Ethnobotany (Vol. 12, pp. 1682): MDPI. DOI: https://doi.org/10.3390/plants12081682

Stojanoski, N. J. V. S. o. s., & art. (1999). Development of health culture in Veles and its region from the past to the end of the 20th century. 13, 34.

Subhan, N., Alam, M. A., Ahmed, F., Shahid, I. J., Nahar, L., & Sarker, S. D. (2008). Bioactivity of Excoecaria agallocha. Revista Brasileira de Farmacognosia, 18. DOI: https://doi.org/10.1590/S0102-695X2008000400004

Sultana, T., Mitra, A. K., & Das, S. (2022). Evaluation of anti-cancer potential of Excoecaria agallocha (L.) leaf extract on human cervical cancer (SiHa) cell line and assessing the underlying mechanism of action. Future Journal of Pharmaceutical Sciences, 8(1), 3. doi:10.1186/s43094-021-00389-y DOI: https://doi.org/10.1186/s43094-021-00389-y

Thirumurugan, G., Vijayakumar, T. M., G.Poovi, K.Senthilkumar, & Dhanaraju, M. D. (2010). Evaluation of Antidiabetic Activity of Excoecaria agallocha L. in Alloxan Induced Diabetic Mice. Natural products-An Indian Journal, 6.

Thirunavukkarasu, P., Ramkumar, L., & Ramanathan, T. J. G. J. o. p. (2009). Anti-ulcer activity of Excoecaria agallocha bark on NSAID-induced gastric ulcer in albino rats. 3(3), 123-126.

Tian, M. Q., Bao, G. M., Ji, N. Y., Li, X. M., & Wang, B. G. (2008). [Triterpenoids and steroids from Excoecaria agallocha]. Zhongguo Zhong Yao Za Zhi, 33(4), 405-408.

Tong, Y., Zhang, G., Li, Y., Xu, J., Yuan, J., Zhang, B., . . . Song, G. (2018). Corilagin inhibits breast cancer growth via reactive oxygen species-dependent apoptosis and autophagy. J Cell Mol Med, 22(8), 3795-3807. doi:10.1111/jcmm.13647 DOI: https://doi.org/10.1111/jcmm.13647

Wang, Z. C., Lin, Y. M., Feng, D. Q., Ke, C. H., Lin, P., Yan, C. L., & Chen, J. D. (2009). A New Atisane-Type Diterpene from the Bark of the Mangrove Plant Excoecaria Agallocha. Molecules, 14(1), 414-422. Retrieved from doi:10.3390/molecules14010414 DOI: https://doi.org/10.3390/molecules14010414

Wongprayoon, P., Leelasart, S., Jantham, J., Pootaeng-on, Y., Oekchuae, S., Limpachayaporn, P., . . . Charoensuksai, P. J. J. o. A. P. S. (2022). A triterpenoid friedelan-3ß-ol isolated from Euphorbia lactea exhibited cytotoxic activity against HN22 cells by inducing an S-phase cell cycle arrest. 12(10), 031-048. DOI: https://doi.org/10.7324/JAPS.2022.121004

Xu, J., Zhang, G., Tong, Y., Yuan, J., Li, Y., & Song, G. (2019). Corilagin induces apoptosis, autophagy and ROS generation in gastric cancer cells in vitro. Int J Mol Med, 43(2), 967-979. doi:10.3892/ijmm.2018.4031 DOI: https://doi.org/10.3892/ijmm.2018.4031

Yasukawa, K., Yu, S., Yamanouchi, S., Takido, M., Akihisa, T., & Tamura, T. J. P. (1995). Some lupane-type triterpenes inhibit tumor promotion by 12-O-tetradecanoylphorbol-13-acetate in two-stage carcinogenesis in mouse skin. 1(4), 309-313. DOI: https://doi.org/10.1016/S0944-7113(11)80008-5

Youn, K., & Jun, M. (2013). In vitro BACE1 inhibitory activity of geraniin and corilagin from Geranium thunbergii. Planta Med, 79(12), 1038-1042. doi:10.1055/s-0032-1328769 DOI: https://doi.org/10.1055/s-0032-1328769

Yu, X., Zhou, T., Yu, H., Chang, L. Y., & Wei, L. L. (2018). Corilagin Reduces the Frequency of Seizures and Improves Cognitive Function in a Rat Model of Chronic Epilepsy. Med Sci Monit, 24, 2832-2840. doi:10.12659/msm.906509 DOI: https://doi.org/10.12659/MSM.906509

Zhang, X.-H., Zou, Z.-Q., Xu, C.-W., Shen, Y.-Z., & Li, D. J. M. M. R. (2011). Myricetin induces G2/M phase arrest in HepG2 cells by inhibiting the activity of the cyclin B/Cdc2 complex. 4(2), 273-277. DOI: https://doi.org/10.3892/mmr.2011.417

Zhao, J., Shan, T., Mou, Y., & Zhou, L. J. M. r. i. m. c. (2011). Plant-derived bioactive compounds produced by endophytic fungi. 11(2), 159-168. DOI: https://doi.org/10.2174/138955711794519492

Downloads

Published

19-12-2023

How to Cite

[1]
S. J. Uddin, T. R. . Ahnaf, P. . Sarkar, M. E. . Shikdar, and S. . Saha, “A SYSTEMATIC REVIEW ON CHEMICAL AND PHARMACOLOGICAL ACTIVITIES OF EXCOECARIA AGALLOCHA: A POTENTIAL SUNDARBAN PLANT ”, Khulna Univ. Stud., pp. 140–159, Dec. 2023.

Issue

Section

Life Science

Similar Articles

1 2 > >> 

You may also start an advanced similarity search for this article.

Most read articles by the same author(s)