ANTIBACTERIAL AND ANTIBIOFILM ACTIVITY OF ERYNGIUM FOETIDUM ESSENTIAL OIL

Authors

  • Jamil Ahmad Shilpi Shilpi Pharmacy Discipline, Khulna University, Khulna-9208, Bangladesh
  • Mst. Farjana Akter Pharmacy Discipline, Khulna University, Khulna-9208, Bangladesh
  • Sumaiya Akter Pharmacy Discipline, Khulna University, Khulna-9208, Bangladesh
  • Md. Nazmul Hasan Zilani Department of Pharmacy, Jashore University of Science and Technology, Jashore, 7408, Bangladesh
  • Omer Abdullah Ahmed Hamdi Department of Chemistry, Faculty of Science and Technology, Al-Neelain University, Khartoum, Sudan
  • Shaikh Jamal Uddin Pharmacy Discipline, Khulna University, Khulna-9208, Bangladesh

DOI:

https://doi.org/10.53808/KUS.2024.21.01.1213-ls

Keywords:

Eryngium foetidum, Essential oil, Antibacterial, Antibiofilm, Molecular docking

Abstract

Eryngium aquaticum L. (Apiaceae), a culinary herb enjoyed in global cuisines, is also valued for its medicinal properties. The essential oil (EO) extracted from E. aquaticum leaves by hydro-distillation was subjected to antibacterial and antibiofilm activity using a microtiter plate-based in vitro assay against Staphylococcus aureus and Pseudomonas aeruginosa. Compounds identified by GC-MS analysis of EO were screened against the transcriptional regulatory proteins SarA of S. aureus and LasR of P. aeruginosa by molecular docking analysis. The minimum inhibitory concentration (MIC) was recorded as 250 μg/mL against both of these two pathogens. The EO of E. aquaticum also showed concentration-dependent antibiofilm activity against these pathogens, with a maximum inhibition of 50.9 and 48.03% against P. aeruginosa and S. aureus, respectively, at the highest concentration (500 μg/mL) tested. The GC-MS analysis identified 17 compounds and all of them showed moderate to weak binding affinity for the active sites of SarA and LasR, with pentanedioic acid (2,4-di-t-butylphenyl) mono-ester showing the best docking score against SarA (-5.7 kcal/mol) and LasR (-8.0 kcal/mol). This study suggests that E. aquaticum can be a good source of EO with antibacterial and antibiofilm activity against P. aeruginosa and S. aureus.

Downloads

Download data is not yet available.

References

Ali, M. T., Blicharska, N., Shilpi, J. A., Seidel, V. (2018). Investigation of the anti-TB potential of selected propolis constituents using a molecular docking approach. Scientific Reports, 8(1), 12238. https://doi.org/10.1038/s41598-018-30209-y

Angane, M., Swift, S., Huang, K., Butts, C. A., Quek, S. Y. (2022). Essential oils and their major components: an updated review on antimicrobial activities, mechanism of action and their potential application in the food industry. Foods, 11(3). https://doi.org/10.3390/foods11030464

Arya, R., Ravikumar, R., Santhosh, R. S., Princy, S. A. (2015). SarA based novel therapeutic candidate against Staphylococcus aureus associated with vascular graft infections. Frontiers in Microbiology, 6, 416. https://doi.org/10.3389/fmicb.2015.00416

Bai, J., Li, J., Chen, Z., Bai, X., Yang, Z., Wang, Z., Yang, Y. (2023). Antibacterial activity and mechanism of clove essential oil against foodborne pathogens. LWT Food Science and Technology, 173, 114249. https://doi.org/https://doi.org/10.1016/j.lwt.2022.114249

Bazargani, M. M., Rohloff, J. (2016). Antibiofilm activity of essential oils and plant extracts against Staphylococcus aureus and Escherichia coli biofilms. Food Control, 61, 156-164. https://doi.org/https://doi.org/10.1016/j.foodcont.2015.09.036

Bottomley, M. J., Muraglia, E., Bazzo, R., Carfì, A. (2007). Molecular insights into quorum sensing in the human pathogen Pseudomonas aeruginosa from the structure of the virulence regulator LasR bound to its autoinducer. Journal of Biological Chemistry, 282(18), 13592-13600. https://doi.org/10.1074/jbc.M700556200

Casalino, G., Dinardo, F. R., D’Amico, F., Bozzo, G., Bove, A., Camarda, A., Lombardi, R., Dimuccio, M. M., Circella, E. (2023). Antimicrobial efficacy of cinnamon essential oil against avian pathogenic Escherichia coli from poultry. Animals, 13(16), 2639. https://www.mdpi.com/2076-2615/13/16/2639

Cui, H., Zhang, C., Li, C., Lin, L. (2019). Antibacterial mechanism of oregano essential oil. Industrial Crops and Products, 139, 111498. https://doi.org/https://doi.org/10.1016/j.indcrop.2019.111498

Dallakyan, S., Olson, A. J. (2015). Small-molecule library screening by docking with PyRx. In J. E. Hempel, C. H. WilliamsC. C. Hong (Eds.), Chemical Biology: Methods and Protocols (pp. 243-250). Springer New York. https://doi.org/10.1007/978-1-4939-2269-7_19

Devi, P. B., Deb, P., Singh, H. B. (2021). Ethno-medicinal uses of Eryngo (Eryngium foetidum L.) by Meitei community of Manipur, Northeast India. Indian Journal of Traditional Knowledge, 20(3), 767-774.

El Omari, N., Charfi, S., Elmenyiy, N., El Hachlafi, N., Balahbib, A., Chamkhi, I., Bouyahya, A. (2022). Essential oils for combating antimicrobial resistance: mechanism insights and clinical uses. In: Kumar, V., Shriram, V., Paul, A., Thakur, M. (eds) Antimicrobial Resistance. (pp. 323-355). Springer, Singapore. https://doi.org/10.1007/978-981-16-3120-7_12

Hanif, M. A., Nisar, S., Khan, G. S., Mushtaq, Z., Zubair, M. (2019). Essential oils. In S. Malik (Ed.), Essential Oil Research: Trends in Biosynthesis, Analytics, Industrial Applications and Biotechnological Production (pp. 3-17). Springer International Publishing. https://doi.org/10.1007/978-3-030-16546-8_1

Hemachandra, G. H. T. K., Thuvaragan, S., Sanmugarajah, V. (2021). Pharmacological screening of Eryngium foetidum Linn–A Review. Borneo Journal of Pharmacy, 4(4), 248-259.

Hossain, S. J., Islam, M. R., Pervin, T., Iftekharuzzaman, M., Hamdi, O. A., Mubassara, S., Saifuzzaman, M., Shilpi, J. A. (2017). Antibacterial, anti-diarrhoeal, analgesic, cytotoxic activities, and GC-MS profiling of Sonneratia apetala (Buch.-Ham.) seed. Preventive Nutrition and Food Science, 22(3), 157-165. 10.3746/pnf.2017.22.3.157

Hou, T., Sana, S. S., Li, H., Xing, Y., Nanda, A., Netala, V. R., Zhang, Z. (2022). Essential oils and its antibacterial, antifungal and anti-oxidant activity applications: A review. Food Bioscience, 47, 101716. https://doi.org/https://doi.org/10.1016/j.fbio.2022.101716

Hu, W., Li, C., Dai, J., Cui, H., Lin, L. (2019). Antibacterial activity and mechanism of Litsea cubeba essential oil against methicillin-resistant Staphylococcus aureus (MRSA). Industrial Crops and Products, 130, 34-41. https://doi.org/https://doi.org/10.1016/j.indcrop.2018.12.078

Hui, X., Yan, G., Tian, F. L., Li, H., Gao, W. Y. (2017). Antimicrobial mechanism of the major active essential oil compounds and their structure–activity relationship. Medicinal Chemistry Research, 26(2), 442-449. https://doi.org/10.1007/s00044-016-1762-0

Karmakar, U. K., Shilpi, J. A., Hossain, M. H., Kundu, P. (2021). Phytochemical screening and antioxidant potential of Portulaca oleracea Linn. Khulna University Studies, 18(2), 27-39. https://doi.org/10.53808/KUS.2021.18.02.2105-ls

Knobloch, K., Pauli, A., Iberl, B., Weigand, H., Weis, N. (1989). Antibacterial and antifungal properties of essential oil components. Journal of Essential Oil Research, 1(3), 119-128. https://doi.org/10.1080/10412905.1989.9697767

Liu, G. Y., Guo, B. Q., Chen, W. N., Cheng, C., Zhang, Q. L., Dai, M. B., Sun, J. R., Sun, P. H., Chen, W. M. (2012). Synthesis, molecular docking, and biofilm formation inhibitory activity of 5-substituted 3,4-dihalo-5H-furan-2-one derivatives on Pseudomonas aeruginosa. Chemical Biology & Drug Design, 79(5), 628-638. https://doi.org/https://doi.org/10.1111/j.1747-0285.2012.01342.x

Liu, Y., Manna, A. C., Pan, C. H., Kriksunov, I. A., Thiel, D. J., Cheung, A. L., Zhang, G. (2006). Structural and function analyses of the global regulatory protein SarA from Staphylococcus aureus. Proceedings of the National Academy of Sciences, 103(7), 2392-2397. https://doi.org/10.1073/pnas.0510439103

Mitra, R., Rouf, R., Dutta, A. K., Shilpi, J. A., Uddin, S. J. (2023). Screening of agglutination activities of common vegetables in Bangladesh. Khulna University Studies, 20(1), 62-71. https://doi.org/10.53808/KUS.2023.20.01.900-ls

Moleyar, V., Narasimham, P. (1992). Antibacterial activity of essential oil components. International Journal of Food Microbiology, 16(4), 337-342. https://doi.org/https://doi.org/10.1016/0168-1605(92)90035-2

Mühlen, S., Dersch, P. (2016). Anti-virulence strategies to target bacterial infections. Current topics in Microbiology and Immunology, 398, 147-183. https://doi.org/10.1007/82_2015_490

Olszewska, M. A., Gędas, A., Simões, M. (2020). The effects of eugenol, trans-cinnamaldehyde, citronellol, and terpineol on Escherichia coli biofilm control as assessed by culture-dependent and -independent methods. Molecules, 25(11), 2641. https://doi.org/10.3390/molecules25112641

Paul, J. H., Seaforth, C. E., Tikasingh, T. (2011). Eryngium foetidum L.: a review. Fitoterapia, 82(3), 302-308. https://doi.org/10.1016/j.fitote.2010.11.010

Paun, V. I., Lavin, P., Chifiriuc, M. C., Purcarea. C. (2021). First report on antibiotic resistance and antimicrobial activity of bacterial isolates from 13,000-year old cave ice core. Scientific Reports, 11(1), 514. https://doi.org/10.1038/s41598-020-79754-5

Percival, S. L., Mayer, D., Kirsner, R. S., Schultz, G., Weir, D., Roy, S., Alavi, A., Romanelli, M. (2019). Surfactants: Role in biofilm management and cellular behaviour. International Wound Journal, 16(3), 753-760. https://doi.org/10.1111/iwj.13093

Roberts, C., Anderson, K. L., Murphy, E., Projan, S. J., Mounts, W., Hurlburt, B., Smeltzer, M., Overbeek, R., Disz, T., Dunman, P. M. (2006). Characterizing the effect of the Staphylococcus aureus virulence factor regulator, SarA, on log-phase mRNA half-lives. Journal of Bacteriology, 188(7), 2593-2603. https://doi.org/10.1128/jb.188.7.2593-2603.2006

Rosato, A., Sblano, S., Salvagno, L., Carocci, A., Clodoveo, M. L., Corbo, F., Fracchiolla, G. (2020). Anti-biofilm inhibitory synergistic effects of combinations of essential oils and antibiotics. Antibiotics, 9(10). https://doi.org/10.3390/antibiotics9100637

Santativongchai, P., Tulayakul, P., Ji, Y., Jeon, B. (2022). Synergistic Potentiation of antimicrobial and antibiofilm activities of penicillin and bacitracin by octyl gallate, a food-grade antioxidant, in Staphylococcus epidermidis. Antibiotics, 11(12), 1775. https://doi.org/10.3390/antibiotics11121775

Shu, C., Ge, L., Li, Z., Chen, B., Liao, S., Lu, L., Wu, Q., Jiang, X., An, Y., Wang, Z., Qu, M. (2024). Antibacterial activity of cinnamon essential oil and its main component of cinnamaldehyde and the underlying mechanism. Frontiers in Pharmacology, 15, 1378434. https://doi.org/10.3389/fphar.2024.1378434

Song, X., Xia, Y. X., He, Z. D., Zhang, H. J. (2018). A review of natural products with anti-biofilm activity. Current Organic Chemistry, 22(8), 789-817. https://doi.org/http://dx.doi.org/10.2174/1385272821666170620110041

Stewart, P. S., Costerton, J. W. (2001). Antibiotic resistance of bacteria in biofilms. Lancet, 358(9276), 135-138. https://doi.org/10.1016/s0140-6736(01)05321-1

Stringaro, A., Colone, M., Angiolella, L. (2018). Antioxidant, antifungal, antibiofilm, and cytotoxic activities of Mentha spp. essential oils. Medicines, 5(4), 112. https://doi.org/10.3390/medicines5040112

Tabarak, M., Devendra, K. P., Priyanka, R., Annie, O. (2016). Evaluation of phytochemicals, antioxidant, antibacterial and antidiabetic potential of Alpinia galanga and Eryngium foetidum plants of Manipur (India). Pharmacognosy Journal, 8(5), 459-464. 10.5530/pj.2016.5.8

Thomas, P. S., Essien, E. E., Ntuk, S. J., Choudhary, M. I. (2017). Eryngium foetidum L. essential oils: chemical composition and antioxidant capacity. Medicines, 4(2), 24. https://doi.org/10.3390/medicines4020024

Torres, N. L., Laurido, C., Pavan, M. F., Zapata, A., Martínez, J. L. (2017). Medicinal plants of Panamá 2: Ethnobotanics of Forestal Reserve La Tronosa, Province of Los Santos. Boletín Latinoamericano y del Caribe de Plantas Medicinales y Aromáticas, 16(4), 361-384. https://blacpma.ms-editions.cl/index.php/blacpma/article/view/191

Zhao, D., Ma, Y., Wang, W., Xiang, Q. (2023). Antibacterial activity and mechanism of cinnamon essential oil nanoemulsion against Pseudomonas deceptionensis CM2. Heliyon, 9(9), e19582. https://doi.org/10.1016/j.heliyon.2023.e19582

Zihad, S., Hasan, M. T., Sultana, M. S., Nath, S., Nahar, L., Rashid, M. A., Uddin, S. J., Sarker, S. D., Shilpi, J. A. (2022). Isolation and characterization of antibacterial compounds from Aspergillus fumigatus: an endophytic fungus from a mangrove plant of the Sundarbans. Evidence-Based Complementary And Alternative Medicine, 2022, 9600079. https://doi.org/10.1155/2022/9600079

Downloads

Published

28-06-2024

How to Cite

[1]
J. A. S. Shilpi, Mst. Farjana Akter, Sumaiya Akter, Md. Nazmul Hasan Zilani, Omer Abdullah Ahmed Hamdi, and Shaikh Jamal Uddin, “ANTIBACTERIAL AND ANTIBIOFILM ACTIVITY OF ERYNGIUM FOETIDUM ESSENTIAL OIL”, Khulna Univ. Stud., pp. 195–206, Jun. 2024.

Issue

Section

Life Science

Similar Articles

1 2 3 4 5 6 7 > >> 

You may also start an advanced similarity search for this article.